首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This article proposes two approaches to tool-supported automatic verification of dense real-time systems against scenario-based requirements, where a system is modeled as a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a requirement is specified as a separate monitored LSC chart. We make timed extensions to a kernel subset of the LSC language and define a trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent observer TA and then non-intrusively composing this observer with the original TA-modeled real-time system, the problems of scenario-based verification reduce to computation tree logic (CTL) real-time model checking problems. When the real-time system is modeled as a set of driving LSC charts, we translate these driving charts and the monitored chart into a behavior-equivalent network of TAs by using a “one-TA-per-instance line” approach, and then reduce the problems of scenario-based verification also to CTL real-time model checking problems. We show how we exploit the expressivity of the TA formalism and the CTL query language of the real-time model checker Uppaal to accomplish these tasks. The proposed two approaches are implemented in the Uppaal tool and built as a tool chain, respectively. We carry out a number of experiments with both verification approaches, and the results indicate that these methods are viable, computationally feasible, and the tools are effective.  相似文献   

2.
3.
The specification language Csp-Casl allows one to model processes as well as data of distributed systems within one framework. In our paper, we describe how a combination of the existing tools Hets and Csp-Prover can solve the challenges that Csp-Casl raises on integrated theorem proving for processes and data. For building this new tool, the automated generation of theorems and their proofs in Isabelle/HOL plays a fundamental role. A case study of industrial strength demonstrates that our approach scales up to complex problems.  相似文献   

4.
We introduce a rewrite-based specification language for modelling probabilistic concurrent and distributed systems. The language, based on PMaude, has both a rigorous formal basis and the characteristics of a high-level rule-based programming language. Furthermore, we provide tool support for performing discrete-event simulations of models written in PMaude, and for statistically analyzing various quantitative aspects of such models based on the samples that are generated through discrete-event simulation. Because distributed and concurrent communication protocols can be modelled using actors (concurrent objects with asynchronous message passing), we provide an actor PMaude module. The module aids writing specifications in a probabilistic actor formalism. This allows us to easily write specifications that are purely probabilistic – and not just non-deterministic. The absence of such (un-quantified) non-determinism in a probabilistic system is necessary for a form of statistical analysis that we also discuss. Specifically, we introduce a query language called Quantitative Temporal Expressions (or QuaTEx in short), to query various quantitative aspects of a probabilistic model. We also describe a statistical technique to evaluate QuaTEx expressions for a probabilistic model.  相似文献   

5.
Esterel is a design language for the specification of real time embedded systems. Based on the synchronous concurrency paradigm, its semantics describes execution as a succession of instants of computation. In this work, we consider the introduction of a new gotopause instruction in the language, which acts as a non-instantaneous jump instruction compatible with concurrency. It allows the programmer to activate state control points anywhere in the program, from where the execution is resumed in the next instant. In order to provide the formal semantics of the extended language, we first define a state semantics of Esterel, which we prove observationally equivalent to the original logical behavioral semantics. Including gotopause in the state semantics is then straightforward. We sketch two key applications of our new primitive: a direct encoding of automata and a quasi-linear rewriting of programs eliminating schizophrenic behaviors.  相似文献   

6.
An instance of the maximum constraint satisfaction problem (Max CSP) is a finite collection of constraints on a set of variables, and the goal is to assign values to the variables that maximises the number of satisfied constraints. Max CSP captures many well-known problems (such as Maxk-SAT and Max Cut) and is consequently NP-hard. Thus, it is natural to study how restrictions on the allowed constraint types (or constraint language) affect the complexity and approximability of Max CSP. The PCP theorem is equivalent to the existence of a constraint language for which Max CSP has a hard gap at location 1; i.e. it is NP-hard to distinguish between satisfiable instances and instances where at most some constant fraction of the constraints are satisfiable. All constraint languages, for which the CSP problem (i.e., the problem of deciding whether all constraints can be satisfied) is currently known to be NP-hard, have a certain algebraic property. We prove that any constraint language with this algebraic property makes Max CSP have a hard gap at location 1 which, in particular, implies that such problems cannot have a PTAS unless P=NP. We then apply this result to Max CSP restricted to a single constraint type; this class of problems contains, for instance, Max Cut and Max DiCut. Assuming PNP, we show that such problems do not admit PTAS except in some trivial cases. Our results hold even if the number of occurrences of each variable is bounded by a constant. Finally, we give some applications of our results.  相似文献   

7.
The advent of proof-carrying code has generated significant interest in reasoning about low-level languages. It is widely believed that low-level languages with jumps must be difficult to reason about by being inherently non-modular. We argue that this is untrue. We take it seriously that, differently from statements of a high-level language, pieces of low-level code are multiple-entry and multiple-exit. And we define a piece of code to consist of either a single labelled instruction or a finite union of pieces of code. Thus we obtain a compositional natural semantics and a matching Hoare logic for a basic low-level language with jumps. By their simplicity and intuitiveness, these are comparable to the standard natural semantics and Hoare logic of While. The Hoare logic is sound and complete wrt. the semantics and allows for compilation of proofs of the Hoare logic of While.  相似文献   

8.
The Mono Model Checker (mmc) is a software model checker for cil bytecode programs. mmc has been developed on the Mono platform. mmc is able to detect deadlocks and assertion violations in cil programs. The design of mmc is inspired by the Java PathFinder (jpf), a model checker for Java programs. The performance of mmc is comparable to jpf. This paper introduces mmc and presents its main architectural characteristics.  相似文献   

9.
10.
This paper focuses on the integration of reachability and observability concepts within an algebraic, institution-based framework. In the first part of this work, we develop the essential ingredients that are needed to define the constructor-based observational logic institution, called COL, which takes into account both the generation- and observation-oriented aspects of software systems. The underlying paradigm of our approach is that the semantics of a specification should be as loose as possible to capture all its correct realizations. We also consider the “black box” semantics of a specification which is useful to study the behavioral properties a user can observe when he/she is experimenting with the system.In the second part of this work, we develop proof techniques for structured COL-specifications. For this purpose we introduce an institution encoding from the COL institution to the institution of many-sorted first-order logic with equality and sort-generation constraints. Using this institution encoding, we can then reduce proofs of consequences of structured specifications built over COL to proofs of consequences of structured specifications written in a simple subset of the algebraic specification language Casl. This means, in particular, that any inductive theorem prover, such as e.g. the Larch Prover or PVS, can be used to prove theorems over structured COL-specifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号