首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
用脉冲激光(Nd:YAG激光)沉积技术在硅基上沉积富硅SiO2薄腊(SiOx,x〈2),沉积时氧气压力分别为1.33,2.66,3.99,5.32,6.65,7.98Pa,膜的厚度约为300nm。随后,在氩(Ar)气中1000℃的温度下对沉积的SiOx薄膜进行热退火处理30min,使在SiO2薄膜中生长出硅纳米晶。用光谱分析仪分析其在室温下的光致发光(PL)光谱时发现,随着沉积氧气压力的增强,峰值波长在减小(即蓝移),表明纳米晶硅颗粒在减小;同时,在本研究中的制作条件下,PL强度与沉积氧气压力有较强的依存关系,在2.66-3.99Pa的氧气压力条件下沉积制作的试样,得到最大的PL强度。  相似文献   

2.
用KrF准分子脉冲激光沉积(PLD)法,以石英为衬底,在300 ℃~600℃制备了MgZnO薄膜.由拉曼光谱仪、AFM、UV/vis分光光度计对薄膜进行表征,结果表明,在600 ℃制备薄膜有最大的禁带宽度3.78 eV,以及最好的结晶质量.在此薄膜上镀上Al电极制备紫外传感器,测量了传感器的的I-V曲线、光谱响应特性,...  相似文献   

3.
<正> 本文以n~+—p浅结硅光电二极管为例,通过解连续方程用计算机对器件光谱响应特性进行分析,结果表明:表面复合速度、掺杂分布、结深是影响光谱响应的主要因素。报告中提出了计算公式,所有计算工作由微机完成。  相似文献   

4.
平面工艺SnO2薄膜甲醛气敏元件的研究   总被引:1,自引:0,他引:1  
用ANSYS仿真软件得到最优化的气体传感器电极结构,采用平面工艺在硅衬底上制作了3 mm×2 mm的直热式Sn02薄膜甲醛气敏元件.用溶胶凝胶(sol-gel)法制备了掺Pd的纳米SnO2薄膜,材料的平均粒径约为15nm.元件的最佳工作温度约为230℃,在该加热温度下测试了元件对体积分数为50×10-9的甲醛气体的灵敏度以及响应恢复时间.实验证明:元件的灵敏度随气体浓度的增大而增大,元件的响应和恢复时间均约为50s.  相似文献   

5.
以吡咯(Py)单体为前驱液,六水合三氯化铁(FeCl3·6H2O)为氧化剂,通过化学氧化聚合法与自组装相结合工艺在柔性聚酰亚胺(PI)衬底上制备聚吡咯-二氧化铈(PPy-CeO2)复合薄膜.通过紫外-可见吸收光谱(UV-Vis)、傅立叶红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及X射线衍射(XRD)、X射线电子能谱分析(XPS)对纯PPy和PPy-CeO2复合材料进行了表征分析,结果表明PPy-CeO2呈典型的核-壳结构.在室温条件下研究了纯PPy薄膜和PPy-CeO2复合薄膜对二氧化氮(NO2)的响应特性,结果表明,PPy-CeO2复合薄膜传感器显示出更优的响应特性,灵敏度为纯PPy薄膜传感器的12.6倍,且具有良好的重复性和选择性.最后讨论分析了PPy-CeO2复合薄膜传感器的NO2敏感机理.  相似文献   

6.
利用旋转甩涂法(Spin-Coating)将间甲酚紫-聚乙烯吡咯烷酮复合薄膜固定在K+交换玻璃光波导表面研制了光波导敏感元件.研究了不同复合比例的间甲酚紫-聚乙烯吡咯烷酮复合薄膜与酸性和挥发性有机气体作用前后的紫外可见吸收光谱变化,并在此基础上研究了该敏感元件在光波导测试系统中对酸性和挥发性有机气体的响应.敏感薄膜与酸性气体作用后,薄膜由黄色变为紫红色.该敏感元件能检测到体积比浓度低于1×10-10(1.41×10-4 mg/m3)的H2S,响应和恢复时间分别为1.1 s和8.5 s,信噪比S/N为15.43;能检测到体积比浓度低于1×10-10(2.66×10-4 mg/m3)SO2气体,响应和恢复时间分别为0.4 s和2.7 s,信噪比S/N为5.88.间甲酚紫-聚乙烯吡咯烷酮复合薄膜厚度为199 nm±5 nm.  相似文献   

7.
设计并制作了以Si3N4作增透膜的Si基Ge量子点红外探测器.采用气态源分子束外延(GSMBE)方法在Si(100)衬底上生长了20层的自组织Ge量子点.在此基础上,流水制作了p-i-n结构的量子点红外探测器.为了提高探测器的响应度,采用Si3N4作为增透膜以增强探测器对入射光的吸收.用传输矩阵方法模拟的结果显示,185上nm厚的Si3N4增透膜可以使探测器在1310 nm波长处具有较高的吸收率.根据此结果,用等离子体增强化学气相沉积(PECVD)方法在探测器表面淀积了185 nm的Si3N4.在室温下,测得量子点探测器在1.31μm处的响应度为8.5 mA/W,跟没有增透膜的器件相比,响应度提高了将近30倍.  相似文献   

8.
为了改善本征石墨烯基电阻型气体传感器的室温气体响应性能,采用电子束蒸镀方法在原器件沟道区域分别沉积六种超薄金属,包括1 nm的Au、Ag、Pt、Pd、Ti和Al,并检测这些器件对NO_2和NH_3气体的响应特性。发现修饰有1 nm Pt的器件对通入3 min 3×10-6 NO_2气体有最高的响应灵敏度,达-56.6%,比原石墨烯器件提高了约9.3倍,但该器件响应饱和较早。而修饰有1 nm Ti的器件对NO_2气体的响应在灵敏度、恢复性等方面都有较好改善,且对NO_2气体浓度有最佳的线性响应,表现出较大的动态探测范围。然而除1 nm Ti以外,修饰有其他五种金属的石墨烯对400×10-6 NH_3的响应均没有明显改善。文章对不同金属材料修饰导致器件气体敏感性能差异的原因进行了分析与讨论。  相似文献   

9.
利用射频磁控溅射技术在SiO2/n-Si和石英玻璃衬底上制备了具有C轴择优取向的ZnO薄膜,研究了退火对ZnO薄膜特性的影响,并在以SiO2/n-Si为衬底、退火温度为900℃的薄膜上制作了Ag-ZnO-Ag肖特基型和Au-ZnO-Au光电导型MSM叉指结构的紫外探测器。所制作的两种MSM紫外探测器在350 nm波长紫外光照下电流增加,在紫外波段有较高的响应度,光响应度峰值在370 nm附近。  相似文献   

10.
利用射频磁控溅射技术在SiO2/n—Si和玻璃衬底上制备ZnO薄膜,研究了溅射气体氩氧比对薄膜特性的影响,在氩氧比为2:3下所制备的ZnO薄膜c轴择优取向相对较好,薄膜的颗粒随氩氧比的增加而增大,所制备的薄膜在可见光均具有较高的透射率,吸收边在360-380nm附近;并在以SiO。/n—Si为衬底,氩氧比为2:3,经过退火处理的ZnO薄膜上制作Ag-ZnO—Ag肖特基MSM叉指结构的紫外探测器,所制作的探测器在5V偏压下漏电流为3.3×10^-8A,在紫外波段有较高的响应度,光响应度峰值在365nm附近。  相似文献   

11.
设计合成了可溶性的四 a (2.2.4 三甲基 3 戊氧基)酞菁铜(C64H80N8O4Cu),利用旋涂技术制备了四 a (2.2.4 三甲基 3 戊氧基)酞菁铜旋涂膜,研究了配合物旋涂膜的红外光谱、电子吸收光谱、对NO2和乙醇蒸汽的敏感特性以及气敏机理。结果表明:可溶性的四 a (2.2.4 三甲基 3 戊氧基)酞菁铜可制得较理想的旋涂膜,与溶液相比较旋涂膜的电子吸收光谱明显变宽,且Q带的2个吸收峰分别红移了16nm和12nm。室温下配合物旋涂膜对较低体积分数NO2呈现出良好的气敏性,在NO2为1.0~5.0×10-6体积分数范围内表现出较好的线性关系,而薄膜对乙醇蒸汽响应的体积分数为3.0×10-5。动力学研究表明:四 a (2.2.4 三甲基 3 戊氧基)酞菁铜旋涂膜对气体的吸附和脱附分2个过程完成。  相似文献   

12.
Metal-deposited optical fiber sensors with Cu and Al with a film thickness of 45 nm based on surface plasmon resonance (SPR) were fabricated for the first time. The response curves and the properties of these sensors were investigated with a comparison of those of the sensors with Au and Ag. The reflection properties of thin films of Au, Ag, Cu, and Al due to the SPR phenomenon were also measured and considered. The metal-deposited SPR optical fiber sensors with Au, Ag, and Cu have high sensitivities and good responses. Though the sensor with Al shows a lower sensitivity, it has a wider response range in the refractivity. The response curve of the sensor with Au calculated from SPR theoretical equations agreed well with that obtained by the experiment. However, the response curves of the sensors with Ag, Cu, and Al have the effects of the surface oxide layers. The surface characterization of these metal films by X-ray photoelectron spectroscopy (XPS) showed the presence of oxide layers on the films of Ag, Cu, and Al. A very thin (about 0.3 nm) oxide layer is present on Ag, while thick (about 2 nm) oxide layers are present on Cu and Al.  相似文献   

13.
G.  I.  M.  J.R.   《Sensors and actuators. B, Chemical》2007,120(2):679-686
The gas-sensing properties of SnO2-based thin films designed for ozone detection are discussed in this paper. The influence of film characteristics on sensor performance is analyzed. SnO2 films with thickness 30–200 nm were deposited by spray pyrolysis. The SnO2 films have a response to ozone that is quantitative and rapid and sufficient for use in ozone control and monitoring applications. Sensor performance is compared with similarly prepared sensors fabricated from In2O3- and WO3-based films. The mechanism of the processes controlling the sensor response characteristics is proposed. The data support our conclusion that the reaction with ozone using the SnO2-film sensors is limited by the adsorption/desorption processes.  相似文献   

14.
Detection of low concentrations of petroleum gas was achieved using transparent conducting SnO2 thin films doped with 0–4 wt.% caesium (Cs), deposited by spray pyrolysis technique. The electrical resistance change of the films was evaluated in the presence of LPG upon doping with different concentrations of Cs at different working temperatures in the range 250–400 °C. The investigations showed that the tin oxide thin film doped with 2% Cs with a mean grain size of 18 nm at a deposition temperature of 325 °C showed the maximum sensor response (93.4%). At a deposition temperature of 285 °C, the film doped with 3% Cs with a mean grain size of 20 nm showed a high response of 90.0% consistently. The structural properties of Cs-doped SnO2 were studied by means of X-ray diffraction (XRD); the preferential orientation of the thin films was found to be along the (3 0 1) directions. The crystallite sizes of the films determined from XRD are found to vary between 15 and 60 nm. The electrical investigations revealed that Cs-doped SnO2 thin film conductivity in a petroleum gas ambience and subsequently the sensor response depended on the dopant concentration and the deposition temperature of the film. The sensors showed a rapid response at an operating temperature of 345 °C. The long-term stability of the sensors is also reported.  相似文献   

15.
This work describes the fabrication of an optical fiber sensor with spectral response to pH based on the deposition of a thin polymeric coating on an optical fiber core. If the thin polymeric coating has a high refractive index real part and a non-null imaginary part, this permits a coupling of light to the modes guided in the polymeric coating originating optical resonances. These resonances are named by some authors as lossy-mode resonances (LMR) or guided-mode resonances. Moreover, the location of the resonances in the optical spectrum varies as a function of the coating thickness and refractive index. Hence, the utilization of the well-known poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) pH sensitive polymeric coating that presents a variation of the thickness with the pH of the solution (known as swelling/deswelling behaviour) permits the fabrication of optical fiber pH sensors based on wavelength detection. The fabrication of ready-to-use devices requires considering several aspects such as the adequate polymeric coating thickness or the selection of the resonance to be monitored. As a result, LMR-based optical fiber pH sensors with accuracy of ±0.001 pH units and an average sensitivity of 0.027 pH units/nm within the range between pH 3 and pH 6 have been obtained after an adequate design.  相似文献   

16.
气敏酞菁锌薄膜透射光谱特性   总被引:1,自引:0,他引:1  
采用真空升华方法制备了酞菁锌(ZnPc)薄膜,并分别测量薄膜在不同浓度的乙醇和NH3气体中的透射光谱。结果发现,波长为350nm时有强的吸收峰,波长为460nm时光透射率最大;薄膜在乙醇气体中的透射率随浓度的增加而下降;NH3浓度的变化对薄膜的光透射率基本无影响。这说明Zn-Pc薄膜有良好的气敏光谱特性。  相似文献   

17.
In this study, the regioregular poly (3-hexyl thiophene) (rr-P3HT) based piezoelectric sensors were developed and evaluated to detect alcoholic volatile organic compounds (VOCs) associated with spoiled and Salmonella typhimurium contaminated packaged beef headspace. The drop coating technique was used to deposit thin films of rr-P3HT on both the sides of quartz crystal microbalance (QCM) electrode. The QCM polymer sensors were found to provide repeatable and reproducible sensor response to alcohol VOCs with a fast recovery (<2 min) at room temperature (25 °C). The principal component analysis on the sensors sensitivities was performed to discriminate the sensed alcohol VOCs, namely: 3-methyl-1-butanol from 1-hexanol. The QCM polymer sensors demonstrated selective response to low concentration of 3-methyl-1-butanol (average estimated lowest detection limit (LDL): 4.35 ppm) and to 1-hexanol (average estimated LDL: 3.20 ppm). The 30 days storage study performed on QCM sensors showed identical sensitivity responses for sensing 3-methyl-1-butanol and 1-hexanol at low concentrations.  相似文献   

18.
Pulsed laser deposited (PLD) Y-doped BaZrO3 thin films (BaZr1-xYxO3-y/2, x = 0.2, y > 0), were investigated as to their viability for reliable humidity microsensors with long-term stability at high operating temperatures (T > 500 °C) as required for in situ point of source emissions control as used in power plant combustion processes. Defect chemistry based models and initial experimental results in recent humidity sensor literature [1] and [2]. indicate that bulk Y-doped BaZrO3 could be suitable for use in highly selective, high temperature compatible humidity sensors. In order to accomplish faster response and leverage low cost batch microfabrication technologies we have developed thin film deposition processes, characterized layer properties, fabricated and tested high temperature humidity micro sensors using these thin films. Previously published results on sputtering Y-doped BaZrO3 thin films have confirmed the principle validity of our approach [3]. However, the difficulty in controlling the stoichiometry of the films and their electrical properties as well as mud flat cracking of the films occurring either at films thicker than 400 nm or at annealing temperature above 800 °C have rendered sputtering a difficult process for the fabrication of reproducible and reliable thin film high temperature humidity microsensors, leading to the evaluation of PLD as alternative deposition method for these films.X-ray Photoelectron Spectroscopy (XPS) data was collected from as deposited samples at the sample surface as well as after 4 min of Ar+ etching. PLD samples were close to the desired stoichiometry. X-ray diffraction (XRD) spectra from all as deposited BaZrO3:Y films show that the material is polycrystalline when deposited at substrate temperatures of 800 °C. AFM results revealed that PLD samples have a particle size between 32 nm and 72 nm and root mean square (RMS) roughness between 0.2 nm and 1.2 nm. The film conductivity increases as a function of temperature (from 200 °C to 650 °C) and upon exposure to a humid atmosphere, supporting our hypothesis of a proton conduction based conduction and sensing mechanism. Humidity measurements are presented for 200–500 nm thick films from 500 °C to 650 °C at vapor pressures of between 0.05 and 0.5 atm, with 0.03–2% error in repeatability and 1.2–15.7% error in hysteresis during cycling for over 2 h. Sensitivities of up to 7.5 atm−1 for 200 nm thick PLD samples at 0.058 atm partial pressure of water were measured.  相似文献   

19.
Abstract— This paper summarizes our recent results on the synthesis and investigation of photoluminescence (PL) from lanthanide‐doped microporous xerogel solids mesoscopically confined in porous anodic alumina (PAA). It was demonstrated, for Tb‐doped samples, that the PL intensity is strongly enhanced in comparison to thin xerogel films processed onto flat surfaces and increased with the thickness of the PAA layer. It was revealed for both Tb‐ and Eu‐doped PAA‐based structures that maximum emission is achieved at a excitation wavelength near 285 nm for the employed TiO2 and Al2O3 xerogels. Strong Eu‐ and Tb‐related PL visible to the naked eye was demonstrated, and a method for the fabrication of luminescent images based on anodizing, photolithography, and sol‐gel processes is proposed.  相似文献   

20.
Wu  Yi  Yuan  Lijing  Hua  Zhongqiu  Zhen  Dong  Qiu  Zhilei 《Microsystem Technologies》2019,25(9):3511-3519

A thin film was coated onto the top of the heating electrodes to reduce the power consumption and improve the uniformity of temperature distribution. Finite element simulation software COMSOL was used to simulate the effect of coating materials and dependence of thicknesses of the coating film on the power consumption of the heating plate. On the basis of simulation, the temperature distribution of different heating plates was measured using infrared thermography. Experiments have showed that the power consumption of the heating plate can be significantly reduced and the temperature uniformity is promoted with adding the coating film on the top of the heating electrodes. The response of the gas sensor based on PdO-WO3 nanoparticles was characterized with analyte of acetone. It was found that the addition of the coating film could enhance the response to acetone. In addition, the response speed of sensors was investigated with coating films and the results indicated that with the coating film sensor response speed became faster.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号