首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为解决高速极限工况下自动驾驶车辆紧急避撞时传统路径跟踪控制方法因轮胎力表达不精确导致的路径跟踪失败问题, 提出一种基于轮胎状态刚度预测的模型预测路径跟踪控制方法. 首先, 基于非线性UniTire轮胎模型求解的轮胎状态刚度对非线性轮胎力进行线性化处理. 其次, 基于期望路径信息提出状态刚度预测方法, 实现预测时域内轮胎力的预测和线性化. 最后, MATLAB和CarSim联合仿真实验表明: 所提出的方法能够明显改善高速极限工况下的避撞控制效果.  相似文献   

2.
为了保证智能车辆在低附着且变速条件下跟踪控制的精确性和稳定性,提出一种基于自适应模型预测控制(MPC)的轨迹跟踪控制算法。针对低附着条件下轨迹跟踪存在行驶稳定性较差的问题,对车辆动力学模型添加侧偏角软约束,分别设计有无添加侧偏角约束的MPC控制器。仿真结果表明,添加侧偏角约束后MPC控制器性能更优,车辆行驶稳定性得到有效提高。在此基础上,又提出了一种自适应的轨迹跟踪控制策略,能够根据车辆速度的变化,实时产生预测时域[(Hp)],分别设计自适应的MPC控制器与4组定值[Hp]的MPC控制器。仿真结果表明,基于自适应模型预测控制的轨迹跟踪控制算法在提高低附着且变速条件下智能车辆轨迹跟踪控制的精度和稳定性方面具有一定的有效性和先进性。  相似文献   

3.
无人车辆轨迹规划与跟踪控制的统一建模方法   总被引:1,自引:0,他引:1  
无人车辆的轨迹规划与跟踪控制是实现自动驾驶的关键.轨迹规划与跟踪控制一般分为两个部分,即先根据车辆周边环境信息以及自车运动状态信息规划出参考轨迹,再依此轨迹来调节车辆纵横向输出以实现跟随控制.本文通过对无人车辆的轨迹规划与跟踪进行统一建模,基于行车环境势场建模与车辆动力学建模,利用模型预测控制中的优化算法来选择人工势场定义下的局部轨迹,生成最优的参考轨迹,并在实现轨迹规划的同时进行跟踪控制.通过CarSim与MATLAB/Simulink的联合仿真实验表明,该方法可在多种场景下实现无人车辆的动态避障.  相似文献   

4.
针对无人车在越野环境下难以高速、高精度地跟踪复杂路况的问题,设计了一种参数自学习的前馈补偿控制器,与模型预测控制方法构成前馈-反馈的控制结构。在该控制结构中,前馈控制根据实时状态的跟踪误差在线更新学习系数,有效考虑车辆高速运动过程中无法精确建模的非线性动力学特性以及复杂路况不断变化的曲率和路面条件等的影响,在保证稳定性的同时快速减小跟踪误差。在越野场景进行了高速的S型与直角弯路径跟踪实车实验来验证参数自学习控制器的有效性,结果表明,所设计的参数自学习控制器相比传统的模型预测控制器跟踪误差和横摆都较小,在跟踪精度和车辆稳定性上都有较大改善。  相似文献   

5.
王恒  梁永裕  李擎  王莉 《控制与决策》2023,38(6):1737-1744
为抑制道路曲率干扰并提高无人车路径跟踪精度,提出一种基于观测器的无人车H预瞄控制器设计方法.首先,将无人车非线性路径跟踪模型转换为线性变参数(linear parameter varying, LPV)系统;然后,建立关于路径曲率的预瞄模型,并将无人车路径跟踪模型与预瞄模型相结合构建增广系统;接着,考虑传感器测量噪声对无人车路径跟踪精度的影响,设计基于观测器的H状态反馈控制器,并将控制器设计问题转化为满足一组线性矩阵不等式的优化问题. Simulink/CarSim联合仿真结果表明,所提出的基于观测器的无人车H预瞄控制方法可以有效减小测量噪声对系统性能的影响,与已有最优控制方法相比,可以取得更好的路径跟踪精度.  相似文献   

6.
针对车辆横摆稳定性控制问题,本文提出一种基于扩张状态观测器的线性模型预测控制器设计方法.首先,将非线性车辆模型线性化,建立带有模型误差干扰项的线性模型,其中线性化导致的模型误差采用扩张状态观测器估计得到,并证明了观测器的稳定性.然后基于此模型设计线性预测控制器,近似实现了非线性预测控制器的控制效果,同时降低了计算量.最后,通过不同路况下的仿真实验结果,验证了所提方法的计算性能和控制效果.  相似文献   

7.
为提高无人驾驶车辆在高速转向工况下的路径跟踪精度与行驶稳定性,基于三自由度单轨车辆模型与模型预测控制理论,分析前轮转角约束对车辆跟踪精度与行驶稳定性的影响,提出一种自适应于侧向附着力的路径跟踪控制方法.以Pacejka'89魔术公式轮胎模型为基础,分析轮胎纵向受力,以此推算轮胎的侧向附着力,从而建立前轮转角约束随车辆状...  相似文献   

8.
针对自动导引车(AGV)轨迹跟踪问题,在确定其可行驶区域的基础上,考虑自动导引车的大小和形状,本文设计了一种基于模型预测控制理论的轨迹跟踪控制方法.首先,将车辆运动学模型进行线性化处理,得到车辆动力学线性模型;其次,运用模型预测控制方法,利用预测路径与期望路径之间的误差,通过优化得到使性能指标最优的控制序列;最后,在MATLAB软件上对轨迹跟踪控制器进行仿真.实验结果表明,AGV可以稳定地跟踪参考轨迹,且距离偏差和角度偏差都在给定的可行范围内,证明了提出的基于模型预测控制的轨迹跟踪算法具有良好的跟踪性能.  相似文献   

9.
为提高自动驾驶车辆在不同工况下的路径跟踪精度和行驶稳定性,基于车辆的单轨模型和模型预测控制(MPC)理论,提出一种依据跟踪偏差和道路曲率自适应调整成本函数权重系数的路径跟踪控制算法。该算法主要是通过模糊控制理论动态优化传统MPC路径跟踪控制器中权重系数矩阵,使得当车辆与参考路径偏差比较大时,能够快速减小跟踪偏差,保证车辆行驶的安全性;当路径跟踪偏差比较小,且参考路径曲率比较小时,使得系统更加侧重行驶稳定性的要求。为验证所设计的路径跟踪控制器的性能,搭建CarSim/Simulink联合仿真模型,在联合仿真过程中,基于权重系数自适应的MPC路径跟踪控制器与基于权重系数为常量的MPC路径跟踪控制器相比,路径跟踪精度和车辆的行驶稳定性均得到了提高。  相似文献   

10.
:针对无人地面车辆轨迹跟踪精度不高,鲁棒性差的问题,提出了一种基于补偿控制的算法;该算法分为运动学和动力学两部分:基于方向角调整策略的运动学控制律能确保无人地面车辆有效跟踪参考轨迹;基于PD与模型参考模糊滑模自适应控制相结合控制的动力学控制律能有效补偿建模不精确和外界扰动带来的影响;仿真结果表明:该算法能够有效跟踪参考轨迹,控制量分配合理且鲁棒性较好.  相似文献   

11.
This paper mainly studies nonlinear feedback control applied to the nonlinear vehicle dynamics with varying velocity. The main objective of this study is the stabilisation of longitudinal, lateral and yaw angular vehicle velocities. To this end, a nonlinear vehicle model is developed which takes both the lateral and longitudinal vehicle dynamics into account. Based on this model, a method to build a nonlinear state feedback control is first designed by which the complexity of system structure can be simplified. The obtained system is then synthesised by the combined Lyapunov–LaSalle method. The simulation results show that the proposed control can improve stability and comfort of vehicle driving. Moreover, this paper presents a lemma which ensures the trajectory tracking and path-following problem for vehicle. It can also be exploited simultaneously to solve both the tracking and path-following control problems of the vehicle ride and driving stability. We also show how the results of the lemma can be applied to solve the path-following problem, in which the vehicle converges and follows a designed path. The effectiveness of the proposed lemma for trajectory tracking is clearly demonstrated by simulation results.  相似文献   

12.
The paper presents a lateral motion stability control method for electric vehicle (EV) driven by four in-wheel motors, which considers time-variable vehicle speed and uncertain disturbance caused by external factors. First, an EV lateral motion dynamics tracking control model is presented. Then in order to deal with the uncertain disturbance in the lateral motion model, an almost disturbance decoupling method using sampled-data state feedback is proposed. Third, a sampled-data state feedback controller is constructed based on the state feedback domination approach. The proposed controller can attenuate the disturbances’ effect on the output to an arbitrary degree of accuracy. Simulation and test results under different vehicle speeds show the effectiveness of the control method.  相似文献   

13.
This paper proposes a new integrated vehicle dynamics management for enhancing the yaw stability and wheel slip regulation of the distributed‐drive electric vehicle with active front steering. To cope with the unknown nonlinear tire dynamics with uncertain disturbances in integrated control problem of vehicle dynamics, a neuro‐adaptive predictive control is therefore proposed for multiobjective coordination of constrained systems with unknown nonlinearity. Unknown nonlinearity with unmodeled dynamics is modeled using a random projection neural network via adaptive machine learning, where a new adaptation law is designed in premise of Lyapunov stability. Given the computational efficiency, a neurodynamic method is extended to solve the constrained programming problem with unknown nonlinearity. To test the performance of the proposed control method, simulations were conducted using a validated vehicle model. Simulation results show that the proposed neuro‐adaptive predictive controller outperforms the classical model predictive controller in tracking nominal wheel slip ratio, desired vehicle yaw rate and sideslip angle, showing its significance in vehicle yaw stability enhancement and wheels slip regulation.  相似文献   

14.
针对车速、车身侧倾角和前轮转角变化较大工况下的非同轴两轮机器人在基于前轮转角的自平衡控制中,因动力学模型准确性对自平衡控制带来的影响,设计了基于RBF神经网络模糊滑模控制的自平衡控制器,利用RBF神经网络的逼近特性,对动力学模型中非线性时变的不确定部分进行自适应逼近,从而提高动力学模型的准确性,并借助模糊规则削弱滑模控制中产生的系统抖振;以及因前轮转角用于自平衡控制中难以实现转向闭环控制,建立了基于纯跟踪法的轨迹跟踪控制器,并设计利用车身平衡时车身侧倾角与前轮转角的耦合关系,将转向闭环控制中的目标前轮转角替换为目标车身侧倾角,从而将自平衡控制器与轨迹跟踪控制器相结合,在保证车身平衡行驶的前提下,实现带有轨迹跟踪的转向闭环控制。实验结果表明,凭借动力学模型的较高准确性,RBF神经网络模糊滑模自平衡控制器具有鲁棒性好、超调量低和响应迅速的优点,并且利用车身平衡后车身侧倾角与前轮转角耦合关系,实现转向闭环控制是可行的,具有良好的轨迹跟踪效果。  相似文献   

15.
This paper deals with accuracy and reliability for the path tracking control of a four wheel mobile robot with a double-steering system when moving at high dynamics on a slippery surface. An extended kinematic model of the robot is developed considering the effects of wheel–ground skidding. This bicycle type model is augmented to form a dynamic model that considers an actuation of the four wheels. Based on the extended kinematic model, an adaptive and predictive controller for the path tracking is developed to drive the wheels front and rear steering angles. The resulting control law is combined with a stabilization algorithm of the yaw motion which modulates the actuation torque of each four wheels, on the basis of the robot dynamic model. The global control architecture is experimentally evaluated on a wet grass slippery terrain, with speeds up to 7 m/s. Experimental results demonstrate enhancement of tracking performances in terms of stability and accuracy relative to the kinematic control.  相似文献   

16.
为了提高智能车辆路径跟踪控制器的可靠性和控制精度,提出一种基于误差动力学模型的路径跟踪控制方法.基于车辆运动学模型和动力学模型建立系统误差动力学模型,并在此基础上推导出车辆路径跟踪控制的稳态控制律,利用李雅普诺夫稳定性理论验证稳态控制律的正确性.为了减小外部干扰对控制性能的影响,提高控制器的可靠性,进一步设计基于车辆侧向位移误差的瞬态控制律,并利用李雅普诺夫稳定性理论验证闭环系统的稳定性.稳态控制律和瞬态控制律构成了非线性的路径跟踪控制器.通过与车辆路径跟踪常用的线性控制器和非线性控制器对比验证所提出控制方法的有效性,线性控制器选用LQR控制器,非线性控制器选用Stanley控制器.仿真结果表明,与LQR控制器相比,所提出控制方法的路径跟踪控制精度、抗干扰性和可靠性更好.与Stanley控制器相比,所提出控制方法具有更好的路径跟踪控制精度和控制收敛速度,且在大曲率路径跟踪过程中具有更好的可靠性.  相似文献   

17.
This paper presents an adaptive Nonlinear Model Predictive Control (NMPC) for the path-following control of a fixed-wing unmanned aerial vehicle (UAV). The objective is to minimize the mean and maximum errors between the reference path and the UAV. Navigating in a cluttered environment requires accurate tracking. However, linear controllers cannot provide good tracking performance due to nonlinearities that arise in the system dynamics and physical limitations such as actuator saturation and state constraints. NMPC provides an alternative since it can combine multiple objectives and constraints, which minimize the objective function. However, it is difficult to decide appropriate control horizon since the path-following performance depends on the profile of the path. Therefore, a fixed-horizon NMPC cannot guarantee accurate tracking performance. An adaptive NMPC that varies the control horizon according to the path curvature profile for tight tracking is proposed in this paper. Simulation results show that the proposed adaptive NMPC controller can follow the path more accurately than a conventional, fixed-horizon NMPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号