首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
针对车辆横摆稳定性控制问题,本文提出一种基于扩张状态观测器的线性模型预测控制器设计方法.首先,将非线性车辆模型线性化,建立带有模型误差干扰项的线性模型,其中线性化导致的模型误差采用扩张状态观测器估计得到,并证明了观测器的稳定性.然后基于此模型设计线性预测控制器,近似实现了非线性预测控制器的控制效果,同时降低了计算量.最后,通过不同路况下的仿真实验结果,验证了所提方法的计算性能和控制效果.  相似文献   

2.
针对车辆横摆稳定性控制问题,本文提出一种基于扩张状态观测器的线性模型预测控制器设计方法.首先,将非线性车辆模型线性化,建立带有模型误差干扰项的线性模型,其中线性化导致的模型误差采用扩张状态观测器估计得到,并证明了观测器的稳定性.然后基于此模型设计线性预测控制器,近似实现了非线性预测控制器的控制效果,同时降低了计算量.最后,通过不同路况下的仿真实验结果,验证了所提方法的计算性能和控制效果.  相似文献   

3.
王康  李琼琼  王子洋  杨家富 《控制与决策》2022,37(10):2535-2542
针对高速行驶工况下,无人车转弯时的侧倾易导致车辆模型非线性程度增加,引起轨迹跟踪精度下降和状态失稳的问题,设计一种考虑车辆侧倾因素,基于非线性模型预测控制(NMPC)的无人车轨迹跟踪控制器.根据拉格朗日分析力学和车辆运动学,考虑车辆侧倾几何学和载荷转移效应,建立考虑侧倾因素的非线性车辆模型,包括车体动力学模型和修正的“Magic Formula”轮胎模型;基于此车辆模型,构建非线性模型预测控制器(NMPC)的预测模型,并设定控制器的线性、非线性约束,以保证车辆的运动状态处于稳定区域内.在Carsim和Simulink联合仿真平台上,验证车辆高速蛇形工况和双移线工况下的轨迹跟踪控制效果,仿真结果显示,所设计的控制器可有效改善高速弯道工况下的跟踪精度和车辆状态稳定性.  相似文献   

4.
为了提高智能车辆路径跟踪控制器的可靠性和控制精度,提出一种基于误差动力学模型的路径跟踪控制方法.基于车辆运动学模型和动力学模型建立系统误差动力学模型,并在此基础上推导出车辆路径跟踪控制的稳态控制律,利用李雅普诺夫稳定性理论验证稳态控制律的正确性.为了减小外部干扰对控制性能的影响,提高控制器的可靠性,进一步设计基于车辆侧向位移误差的瞬态控制律,并利用李雅普诺夫稳定性理论验证闭环系统的稳定性.稳态控制律和瞬态控制律构成了非线性的路径跟踪控制器.通过与车辆路径跟踪常用的线性控制器和非线性控制器对比验证所提出控制方法的有效性,线性控制器选用LQR控制器,非线性控制器选用Stanley控制器.仿真结果表明,与LQR控制器相比,所提出控制方法的路径跟踪控制精度、抗干扰性和可靠性更好.与Stanley控制器相比,所提出控制方法具有更好的路径跟踪控制精度和控制收敛速度,且在大曲率路径跟踪过程中具有更好的可靠性.  相似文献   

5.
为了保证智能车辆在低附着且变速条件下跟踪控制的精确性和稳定性,提出一种基于自适应模型预测控制(MPC)的轨迹跟踪控制算法。针对低附着条件下轨迹跟踪存在行驶稳定性较差的问题,对车辆动力学模型添加侧偏角软约束,分别设计有无添加侧偏角约束的MPC控制器。仿真结果表明,添加侧偏角约束后MPC控制器性能更优,车辆行驶稳定性得到有效提高。在此基础上,又提出了一种自适应的轨迹跟踪控制策略,能够根据车辆速度的变化,实时产生预测时域[(Hp)],分别设计自适应的MPC控制器与4组定值[Hp]的MPC控制器。仿真结果表明,基于自适应模型预测控制的轨迹跟踪控制算法在提高低附着且变速条件下智能车辆轨迹跟踪控制的精度和稳定性方面具有一定的有效性和先进性。  相似文献   

6.
高速列车自动驾驶(ATO)系统本质上是强非线性和不确定性的系统,针对高速列车模型参数非线性和时变性等特点,文章提出了一种前馈自适应广义预测控制(FA-GPC)的方法对ATO系统进行动态优化控制,并设计了一种带约束的多目标预测控制器。首先,基于列车多质点模型,分析附加阻力的改变对列车运行的影响;然后,结合列车运行过程中的速度跟踪精度、停车精度及运行舒适性等关键指标,构建包含控制输入约束的多目标性能指标函数,设计基于多目标函数的前馈广义预测速度跟踪控制算法,解决了由于附加阻力变化导致控制器超调的问题并加快了控制收敛速度。由于列车运行过程中受外界环境、乘客流动等因素影响,阻力变化大,难以建立精确的数学模型,因此采用带约束的变遗忘因子递推最小二乘法来辨识出列车控制系统在不同工况下受控自回归积分滑动平均模型(CARIMA),进而提高控制系统的鲁棒性。仿真结果表明,相比传统的无前馈GPC和PID控制器,前馈广义控制器在不同线路条件下巡航控速速度跟踪精度在±0.5 km/h范围内,具有良好的跟踪性;在强扰动情况下通过引入自适应改进的前馈广义预测控制算法,具有较强的鲁棒性。  相似文献   

7.
针对快速路交通系统复杂时变以及难以建模的特点,首先,本文设计了基于无模型自适应预测控制的快速路入口匝道控制方案.其次,根据快速路交通系统具有重复性特点,本文在无模型自适应预测控制方法的基础上引入开环迭代学习控制,提出一种带有迭代学习前馈外环的无模型自适应入口匝道预测控制方案.相比无模型自适应预测控制方案,该方案可以利用迭代学习前馈控制器补偿系统可重复扰动,实现系统的完全跟踪.值得说明的是,预测控制器和学习控制器可以独立工作也可以联合工作.最后,文章给出了控制方案的收敛性分析,并通过交通流仿真验证了所提控制方案的有效性.  相似文献   

8.
研究含有时变参数的车辆动力学模型的输出跟踪控制问题.控制目标是使车辆的横摆角速度和质心侧偏角分别跟踪理想的设定值,通过反推方法设计输出反馈自适应控制器.控制器的输出为主动横摆力矩,通过控制主动横摆力矩来控制车辆的输出响应跟踪理想的输出信号,从而提高车辆的安全性.仿真结果表明,该控制器能更好地适应车速和路况的变化,鲁棒性强.  相似文献   

9.
针对汽车系统的非线性和参数不确定性,设计了一种“前馈+反馈”自适应神经模糊控制器,通过ESP和AFS的协调控制来提高汽车操纵稳定性.ESP反馈控制器采用模糊控制策略,以横摆角速度和质心侧偏角为控制目标;AFS前馈控制器采用径向基神经网络控制,以反馈控制器的输出作为误差进行学习,从而实现自适应控制.仿真结果表明,上述控制策略是可行和有效的,能显著改善汽车在高速或湿滑路面上的操纵稳定性.  相似文献   

10.
基于阻尼最小二乘法的神经网络自校正一步预测控制器   总被引:4,自引:1,他引:3  
针对非线性控制器设计中遇到的模型结构及模型参数辨识问题,采用多层前馈神经网络去逼近任意的非线性系统,并使用收敛速度快且稳定性好的阻尼最小二乘法在线学习网络的仅植。基于估计的神经网络模型,依据辨识与控制的对偶原则,设计了基于阻尼最小二乘法的一步向前预测控制器。仿真研究表明,这种神经网络自校正控制器不仅具有很好的性能,而且不会产生参数爆发现象。  相似文献   

11.
为提高自动驾驶车辆在不同工况下的路径跟踪精度和行驶稳定性,基于车辆的单轨模型和模型预测控制(MPC)理论,提出一种依据跟踪偏差和道路曲率自适应调整成本函数权重系数的路径跟踪控制算法。该算法主要是通过模糊控制理论动态优化传统MPC路径跟踪控制器中权重系数矩阵,使得当车辆与参考路径偏差比较大时,能够快速减小跟踪偏差,保证车辆行驶的安全性;当路径跟踪偏差比较小,且参考路径曲率比较小时,使得系统更加侧重行驶稳定性的要求。为验证所设计的路径跟踪控制器的性能,搭建CarSim/Simulink联合仿真模型,在联合仿真过程中,基于权重系数自适应的MPC路径跟踪控制器与基于权重系数为常量的MPC路径跟踪控制器相比,路径跟踪精度和车辆的行驶稳定性均得到了提高。  相似文献   

12.
With regard to precision/ultra-precision motion systems, it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances. In this paper, to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control (ILC), a novel real-time iterative compensation (RIC) control framework is proposed for precision motion systems without changing the inner closed-loop controller. Specifically, the RIC method can be divided into two parts, i.e., accurate model prediction and real-time iterative compensation. An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times. In light of predicted errors, a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation. Both the prediction and compensation processes are finished in a real-time motion control sampling period. The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions. Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability, which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.   相似文献   

13.
汽车导航系统是智能交通系统不可或缺的组成部分。目前,大多数汽车导航仪由于受到诸多因素的影响,不能满足市场需求,从而使得新型组合导航仪的研发成为全球最大的难点、热点。针对这一问题,首先采用DGNSS/INS组合导航系统实现了实时采集车辆位置、速度信息,提高了导航定位的精确性。其次,重点对适应高速工况的自主导航控制器进行了设计,并构建了运动学模型和动力学模型。最后,通过仿真试验验证了控制器在不同速度条件下对车辆的控制情况。结果表明,车辆在不同高速工况下行驶,设计的控制器在保证车辆稳定性的同时可以尽量提高对轨迹跟踪的精度。  相似文献   

14.
针对非连续路段下的轨迹跟踪问题,设计了基于观测型的预测控制器。首先建立了移动机器人的运动学模型,根据机器人的运动学模型得出了其位姿误差微分方程;然后在轨迹跟踪问题的基础上,设计了系统的观测模型,通过将预测控制器与系统的观测模型结合,设计了观测型预测控制器;最后再MATLAB环境下,利用本文所设计的控制器对移动机器人在非连续路段下的轨迹跟踪问题进行仿真,并将仿真结果与PID控制器控制的仿真结果进行对比,由仿真结果可以看出,本文所设计的控制器具有很好的鲁棒性、快速性及稳定性,可适用于移动机器人的轨迹跟踪的研究。  相似文献   

15.
王冠  夏红伟 《控制与决策》2023,38(6):1602-1610
为了解决高超声速飞行器纵向运动模型的稳定轨迹跟踪控制问题,设计一种指定时间自适应控制方法.通过引入障碍李雅普诺夫函数,保证速度跟踪误差和高度跟踪误差能够收敛到期望的区域,同时满足系统的瞬态性能和稳态精度.将自适应控制与实际指定时间稳定理论结合,实现闭环系统在指定时间稳定,收敛时间可根据实际需求预先指定.引入的固定时间滤波器对虚拟导数进行求解,可以避免传统反步控制中存在的“计算爆炸”问题,提高收敛速度.对所设计的控制器利用李雅普诺夫理论给出严格理论证明,并能够保证系统其他状态变量在指定时间内趋于稳态值.仿真结果表明,所设计的控制器能够使速度和高度稳定地跟踪参考信号,满足时变的性能约束需求且具有较强的鲁棒性.  相似文献   

16.
Neural-network hybrid control for antilock braking systems   总被引:6,自引:0,他引:6  
The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.  相似文献   

17.
为提高无人驾驶车辆在高速转向工况下的路径跟踪精度与行驶稳定性,基于三自由度单轨车辆模型与模型预测控制理论,分析前轮转角约束对车辆跟踪精度与行驶稳定性的影响,提出一种自适应于侧向附着力的路径跟踪控制方法.以Pacejka'89魔术公式轮胎模型为基础,分析轮胎纵向受力,以此推算轮胎的侧向附着力,从而建立前轮转角约束随车辆状...  相似文献   

18.
We study the problem of converting a trajectory tracking controller to a path tracking controller for a nonlinear non-minimum phase longitudinal aircraft model. The solution of the trajectory tracking problem is based on the requirement that the aircraft follows a given time parameterized trajectory in inertial frame. In this paper we introduce an alternative nonlinear control design approach called path tracking control. The path tracking approach is based on designing a nonlinear state feedback controller that maintains a desired speed along a desired path with closed loop stability. This design approach is different from the trajectory tracking approach where aircraft speed and position are regulated along the desired path. The path tracking controller regulates the position errors transverse to the desired path but it does not regulate the position error along the desired path. First, a trajectory tracking controller, consisting of feedforward and static state feedback, is designed to guarantee uniform asymptotic trajectory tracking. The feedforward is determined by solving a stable noncausal inversion problem. Constant feedback gains are determined based on LQR with singular perturbation approach. A path tracking controller is then obtained from the trajectory tracking controller by introducing a suitable state projection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号