首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为提高超宽带(ultra-wideband, UWB)技术在非视距(non line of sight, NLOS)环境下的定位精度,提出一种基于粒子滤波融合视觉与UWB数据的定位方法。视觉模块通过识别与检测标签推算出绝对位姿;UWB模块鉴别由NLOS条件干扰的测距值,筛选最优测距值进行自适应权重的定位算法,提升覆盖区域的整体定位精度;基于粒子滤波将两者的实时定位信息进行数据融合。实验结果表明,融合定位方法具有实时性和鲁棒性,有效抑制了NLOS环境引起的误差,在NLOS环境下定位精度能够达到0.26 m。  相似文献   

2.
针对复杂室内环境下超宽带(Ultra WideBand,UWB)信号传播的非视距(Non Line Of Sight,NLOS)误差问题,本文提出了一种基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的环境自适应UWB/DR室内定位方法.该方法通过建立自适应UKF滤波模型,将UWB定位信息和航迹推算(Dead Reckoning,DR)定位信息进行融合.依据新息和高斯分布的3σ原则来对UWB定位结果进行非视距检测,再通过新息的实时估计协方差和理论协方差来构建环境适应系数,进而用此系数动态修正UWB定位的观测噪声,使得观测噪声自适应真实环境,降低NLOS误差对融合定位结果的影响.实验结果表明,该方法能有效减小UWB定位的NLOS误差,并且由于环境适应系数的创新引入,比UKF定位和粒子滤波定位(Particle Filtering,PF)有更高的定位精度和更强的抗NLOS误差性能.  相似文献   

3.
为了解决在室内非视距(NLOS)定位场景中超宽带(UWB)技术性能不佳、航位推算(PDR)算法累积误差过大的问题,以及由环境因素引起的UWB性能下降的问题,提出了一种基于UWB误差预测而自适应系数调节的UWB/PDR融合定位算法。该算法创新地提出了利用支持向量机(SVM)回归模型对复杂环境中UWB定位误差进行预测,并以此为基础,为常规的扩展卡尔曼滤波(EKF)算法添加了自适应调节系数,以提高UWB/PDR的融合定位效果。实验结果表明,所提算法在复杂UWB环境中可以有效预测当前UWB定位误差水平,并通过自适应调整融合系数提高精度,使得较常规EKF算法在一般区域的定位误差降低了18.2%,在UWB精度较差的区域中的定位误差降低了48.7%,从而减小了环境对UWB性能的影响;在包含UWB的视距内(LOS)及NLOS的复杂场景中,通过融合定位算法,将定位每百米误差由米级降低至分米级,解决了NLOS场景中PDR 误差过大的问题。  相似文献   

4.
随着室内定位需求的不断提高,室内定位精度的提高成为目前研究的热点,单一传感器定位技术在复杂的室内环境中定位误差较大、精度较低。针对上述问题提出了一种基于UWB和IMU融合的室内定位方法。该方法首先利用卡尔曼滤波算法对UWB定位技术的伪距信息进行非视距误差的处理,利用最小二乘法解算出位置信息,进而与IMU定位系统解算出来的位置进行松耦合,将UWB定位信息作为量测方程,IMU定位信息作为系统方程最终得到松耦合之后的定位结果。通过仿真实验表明,上述方法可以有效地抑制UWB非视距误差和IMU累积误差对定位精度的影响,提高室内定位的精度。  相似文献   

5.
《微型机与应用》2019,(5):53-57
为了提升室内定位系统在复杂环境中的实用性,提出了带非视距检测的超宽带(UWB)/行人航迹推算(PDR)组合定位方法。该方法过滤了UWB测量由于非视距(NLOS)带来的有害数据,采用残差状态量的卡尔曼滤波将UWB和PDR的有效数据进行融合,避免了由于系统非线性带来的近似误差,提升了组合系统的定位精度和鲁棒性。仿真和实验结果表明,组合定位系统能够消除非视距的影响,始终比单个系统定位精度高,其定位误差90%在1 m以内,为基于室内定位的应用提供了可靠的基础数据。  相似文献   

6.
针对当前UWB技术在传统厂区布站方式下室内定位误差较大,无法良好实现对象的三维显示问题,基于多传感器融合,本文提出一种将UWB数据与IMU数据进行先预处理、后融合的算法。该方法通过TOF测距后将UWB数据进行小波阈值去噪,递推最小二乘定位,并与IMU数据进行扩展卡尔曼滤波融合,从而减小标签的三维距离误差,提高定位精度,实现对厂区可移动设备的实时监控管理。仿真结果表明,基于多传感器融合的RLS-EKF室内定位能够减小标签三维定位误差,提高定位的准确性,满足厂区室内实时定位的精度要求。  相似文献   

7.
在UWB室内定位中,测距中存在的NLOS误差和测距异常值会大幅降低其定位的精度和可靠性.针对这一问题,提出了一种自适应抗差卡尔曼滤波方法.该方法首先在UWB距离模型的基础上,利用新息向量和LOS环境下的阈值所构造的抗差因子鉴别并削弱NLOS测距误差和测距异常值的影响,同时利用Sage-Husa滤波对系统噪声进行实时估计和修正,在此基础上推导UWB定位的线性模型,利用卡尔曼滤波进行UWB定位解算.实验结果表明,该方法能有效地抑制并消除UWB测距中的NLOS测距误差和测距异常值的影响,进而能提高UWB定位的精度和可靠性.  相似文献   

8.
为了减小非视距(NLOS) 误差对超宽带(UWB) 室内定位系统定位精度的影响,提出了一种基于卷积神经网络 (CNN)的超宽带室内定位算法。利用超宽带系统采集非视距环境下的室内定位数据,根据信号在非视距环境下传播时的误差特性建立CNN模型,将定位数据输入网络进行训练,以减小NLOS误差对定位精度的影响。然后用扩展卡尔曼滤波(EKF) 进行位置估计,当系统处于不同室内环境时,使用在线学习算法调整 CNN参数,提高系统的兼容性。实验结果表明,该算法可以在不同室内环境下有效减小NLOS误差的影响,保持厘米级的定位精度,具有一定的实用价值。  相似文献   

9.
针对复杂室内环境中密集行人定位精度低、超宽带(UWB)基站密度要求高的问题,提出一种基于UWB的密集行人三维协同定位算法。首先使用聚类算法抑制测距数据中较大非视距(NLOS)误差,并使用高斯均值混合滤波抑制标准测量误差;然后提出双层协同定位算法,建立协同定位数学模型,并结合迭代初始值获取策略进行初步定位,降低了基站数量要求,在筛选出NLOS误差较小的测距数据并修正后,进行二次定位;最后考虑行人高机动性,设计一种交互多模型卡尔曼滤波算法,缓解了定位结果跳变问题。实验结果表明,所提算法在弱NLOS环境和强NLOS环境下定位精度分别达到0.11 m、0.17 m,相比其他算法,具有较高定位精度,进一步降低了对UWB基站密度要求。  相似文献   

10.
融合超宽带(UWB)和惯性导航系统(INS)能够实现消防员室内精确定位。为实现UWB的非视距(NLOS)误差检测,设计一种双级EKF框架。该框架以松耦合形式实现UWB/INS的数据融合,通过INS获取的初始位置估计坐标以检测UWB测量值的NLOS误差,根据检测结果计算残差矩阵来动态调整融合滤波器的测量噪声矩阵,以达到缓解NLOS误差的目的。实验结果表明,与三角不等式原理检测算法和无NLOS检测的UWB/INS简单融合算法相比,所提NLOS检测算法具备良好的检测能力、较强的稳定性及较高的定位精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号