首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A new threshold‐voltage compensation technique for polycrystal line‐silicon thin‐film transistors (poly‐Si TFTs) used in active‐matrix organic light‐emitting‐diode (AMOLED) display pixel circuits is presented. The new technique was applied to a conventional 2‐transistor—1‐capacitor (2T1C) pixel circuit, and a new voltage‐programmed pixel circuit (VPPC) is proposed. Theoretically, the proposed pixel is the fastest pixel with threshold‐voltage compensation reported in the literature because of the new compression technique implemented with a static circuit block, which does not affect the response time of the conventional 2T1C pixel circuit. Furthermore, the new pixel exhibits all the other advantages of the 2T1C pixel, such as the simplicity of the peripheral drivers and improves other characteristics, such as its behavior in the temperature variations. The verification of the proposed pixel is made through simulations with HSpice. In order to obtain realistic simulations, device parameters were extracted from fabricated low‐temperature poly‐Si (LTPS) TFTs.  相似文献   

2.
Abstract— We propose a new pixel design for active‐matrix organic light‐emitting diodes (AMOLEDs) employing five polycrystalline thin‐film transistors (poly‐Si TFTs) and one capacitor, which decreases the data current considerably in order to reduce the charging time compared with that of conventional current‐mirror structures. Also, the new pixel design compensates the threshold‐voltage degradation of OLEDs caused by continuous operation and the non‐uniformity of poly‐Si TFTs due to excimer‐laser annealing. The proposed pixel circuit was verified by SPICE simulation, based on measured TFT and OLED characteristics. We also propose current‐data‐driver circuitry that reduces the number of shift‐register signals for addressing the current data driver by one‐half.  相似文献   

3.
Developments of backplane technologies, which are one of the challenging topics, toward the realization of flexible active matrix organic light‐emitting diodes (AMOLEDs) are discussed in this paper. Plastic substrates including polyimide are considered as a good candidate for substrates of flexible AMOLEDs. The fabrication process flows based on plastic substrates are explained. Limited by the temperature that plastic substrates can sustain, TFT technologies with maximum processing temperature below 400 °C must be developed. Considering the stringent requirements of AMOLEDs, both oxide thin‐film transistors (TFTs) and ultra‐low‐temperature poly‐silicon TFTs (U‐LTPS TFTs) are investigated. First, oxide TFTs with representative indium gallium zinc oxide channel layer are fabricated on polyimide substrates. The threshold voltage shifts under bias stress and under bending test are small. Thus, a 4.0‐in. flexible AMOLED is demonstrated with indium gallium zinc oxide TFTs, showing good panel performance and flexibility. Further, the oxide TFTs based on indium tin zinc oxide channel layer with high mobility and good stability are discussed. The mobility can be higher than 20 cm2/Vs, and threshold voltage shifts under both voltage stress and current stress are almost negligible, proving the potential of oxide TFT technology. On the other hand, the U‐LTPS TFTs are also developed. It is confirmed that dehydrogenation and dopant activation can be effectively performed at a temperature within 400 °C. The performance of U‐LTPS TFTs on polyimide is compatible to those of TFTs on glass. Also, the performance of devices on polyimide can be kept intact after devices de‐bonded from glass carrier. Finally, a 4.3‐in. flexible AMOLED is also demonstrated with U‐LTPS TFTs.  相似文献   

4.
A pixel circuit and a gate driver on array for light‐emitting display are presented. By simultaneously utilizing top‐gate n‐type oxide and p‐type low‐temperature polycrystalline silicon (LTPS) thin‐film transistors (TFTs), the circuits provide high refresh rate and low power consumption. An active‐matrix LED (AMOLED) panel with proposed circuits is fabricated, and driving at various refresh rate ranging from 1 to 120 Hz could be achieved.  相似文献   

5.
Abstract— Low‐temperature polysilicon (LTPS) technology has a tendency towards integrating all circuits on glass substrate. However, the poly‐Si TFTs suffered poor uniformity with large variations in the device characteristics due to a narrow laser process window for producing large‐grained poly‐Si TFTs. The device variation is a serious problem for circuit realization on the LCD panel, so how to design reliable on‐panel circuits is a challenge for system‐on‐panel (SOP) applications. In this work, a 6‐bit R‐string digital‐to‐analog converter (DAC) with gamma correction on glass substrate for TFT‐panel applications is proposed. The proposed circuit, which is composed of a folded R‐string circuit, a segmented digital decoder, and reordering of the decoding circuit, has been designed and fabricated in a 3‐μm LTPS technology. The area of the new proposed DAC circuit is effectively reduced to about one‐sixth compared to that of the conventional circuit for the same LTPS process.  相似文献   

6.
Abstract— A novel pixel circuit for electrically stable AMOLEDs with an a‐Si:H TFT backplane and top‐anode organic light‐emitting diode is reported. The proposed pixel circuit is composed of five a‐Si:H TFTs, and it does not require any complicated drive ICs. The OLED current compensation for drive TFT threshold voltage variation has been verified using SPICE simulations.  相似文献   

7.
Abstract— A new voltage‐driving active‐matrix organic light‐emitting diode (AMOLED) pixel circuit is proposed to improve the display image‐quality of AMOLED displays. Because OLEDs are current‐driven devices, the I × R voltage drop in the power lines is evitable. Accordingly, the I × R voltage‐drop compensation scheme should be included in the pixel‐driving method when a voltage‐compensation method is used. The proposed pixel was designed for the compensation of an I × R voltage drop in the power lines as well as for the compensation of the threshold‐voltage non‐uniformity of low‐temperature polycrystalline‐silicon thin‐film transistors (LTPS TFTs). In order to verify the compensation ability of the proposed pixel, SPICE simulation was performed and compared with those of other conventional pixels. When the Vss voltage varies from 0 to 1 V, the drain current of the proposed pixel decreased by under 1% while that of conventional Vth compensation methods without Vss compensation decreased by over 60%. 2.2‐in. QCIF+ full‐color AMOLED displays, which employ the proposed pixel, have been also developed. It was verified by comparison of the display image quality with a conventional panel that our proposed panel successfully overcame the voltage‐drop problems in the power lines.  相似文献   

8.
Abstract— The characteristics of OLED backplanes including the intrinsic properties of a‐Si TFTs and LTPS TFTs will be reviewed. While LTPS TFTs reveal satisfactory stability in AMOLED‐display applications, a‐Si AMOLEDs show better uniformity and are capable of driving OLEDs. However, the stability of a‐Si TFTs under long‐term operation is still unacceptable and remains to be the key issue constraining the commercialization of a‐Si TFT AMOLEDs.  相似文献   

9.
Abstract— A voltage‐programming method with transimpedance‐feedback control technique is proposed for compensating threshold voltage and mobility variations of driving thin‐film transistors (TFTs) in large‐area high‐resolution polycrystalline‐silicon (poly‐Si) active‐matrix organic light‐emitting‐diode (AMOLED) displays. Those electrical characteristic variations of TFTs throughout a large‐area high‐resolution panel result in picture‐quality non‐uniformity of AMOLED displays. The simulation and experimental results of the proposed method show that the maximum emission‐current error for 30‐in. full‐high‐definition television (HDTV) applications is less than 1.9% when the mobility variation and the threshold‐voltage variation are ±12.5% and ±0.3 V, respectively. The proposed method is the best programming method for large‐area high‐resolution AMOLEDs among the published methods.  相似文献   

10.
Abstract— Amorphous‐oxide thin‐film‐transistor (TFT) arrays have been developed as TFT backplanes for large‐sized active‐matrix organic light‐emitting‐diode (AMOLED) displays. An amorphous‐IGZO (indium gallium zinc oxide) bottom‐gate TFT with an etch‐stop layer (ESL) delivered excel lent electrical performance with a field‐effect mobility of 21 cm2/V‐sec, an on/off ratio of >108, and a subthreshold slope (SS) of 0.29 V/dec. Also, a new pixel circuit for AMOLED displays based on amorphous‐oxide semiconductor TFTs is proposed. The circuit consists of four switching TFTs and one driving TFT. The circuit simulation results showed that the new pixel circuit has better performance than conventional threshold‐voltage (VTH) compensation pixel circuits, especially in the negative state. A full‐color 19‐in. AMOLED display with the new pixel circuit was fabricated, and the pixel circuit operation was verified in a 19‐in. AMOLED display. The AMOLED display with a‐IGZO TFT array is promising for large‐sized TV because a‐IGZO TFTs can provide a large‐sized backplane with excellent uniformity and device reliability.  相似文献   

11.
Abstract— P‐type low‐temperature (450°C) polycrystalline‐silicon thin‐film‐transistor circuits for peripheral driver integration in active‐matrix displays are proposed and verified. A low‐voltage (5 V) driven poly‐Si scan driver is designed by employing a level shifter and shift register. A source driver for six‐bit digital interface is proposed, and the building blocks such as latch, DAC, and analog buffer are described. The latch samples and holds the digital bits (D and D') without an output voltage loss. A new source‐follower type analog buffer is developed and exhibits a small offset deviation regardless of the VTH variation of the buffer TFT. The simulation and measurement results ensure that the proposed circuits were successfully designed for p‐type panel integration.  相似文献   

12.
Abstract— A new driving scheme for active‐matrix organic light‐emitting diodes (AMOLED) displays based on voltage programming is proposed. While conventional voltage drivers have a trade‐off between speed and accuracy, the new scheme is inherently fast and accurate. Based on the new driving scheme, a fast pixel circuit is designed using amorphous‐silicon (a‐Si) thin‐film transistors (TFTs). As the simulation results indicate, this pixel circuit can compensate the threshold‐voltage shift (VT shift) of the driver transistors. This pixel can be programmed in just 10 μsec, and it can compensate the threshold‐voltage shifts over 5 V with an error rate of less than 5% for a 1 ‐μA pixel current.  相似文献   

13.
In this paper, an active‐matrix organic light‐emitting diode pixel circuit is proposed to improve the image quality of 5.87‐in. mobile displays with 1000 ppi resolution in augmented and virtual reality applications. The proposed pixel circuit consisting of three thin‐film transistors (TFTs) and two capacitors (3T2C) employs a simultaneous emission driving method to reduce the number of TFTs and the emission current error caused by variations in threshold voltage (Vth) and subthreshold slope (SS) of the low‐temperature polycrystalline silicon TFTs. Using the simultaneous emission driving method, the compensation time is increased to 90 μs from 6.5 μs achieved in the conventional six TFTs and one capacitor (6T1C) pixel circuit. Consequently, the emission current error of the proposed 3T2C pixel circuit was reduced to ±3 least significant bit (LSB) from ±12 LSB at the 32nd gray level when the variations in both the Vth and SS are ±4σ. Moreover, both the crosstalk errors due to the parasitic capacitances between the adjacent pixel circuits and due to the leakage current were achieved to be less than ±1 LSB over the entire gray level. Therefore, the proposed pixel circuit is very suitable for active‐matrix organic light‐emitting diode displays requiring high image quality.  相似文献   

14.
We propose an in‐pixel temperature sensor using low‐temperature polycrystalline silicon and oxide (LTPO) thin‐film transistor (TFTs) for high‐luminance active matrix (AM) micro‐light‐emitting diode (LED) displays. By taking advantage of the different off‐current characteristics of p‐type LTPS TFTs and n‐type a‐IGZO TFTs under temperature change, we designed and fabricated a temperature sensor consists of only LTPO TFTs without additional sensing component or material. The fabricated sensor exhibits excellent temperature sensitivity of up to 71.8 mV/°C. In addition, a 64 × 64 temperature sensor array with 3T sensing pixel and integrated gate driver has also been fabricated, which demonstrates potential approach for maxing out the performance of high‐luminance AM micro‐LED display with real‐time in‐pixel temperature monitoring.  相似文献   

15.
Abstract— A pixel structure for shutter‐glasses‐type stereoscopic 3‐D active‐matrix organic light‐emitting‐diode (AMOLED) displays is proposed. The proposed pixel programs data to the pixel during the light‐emission time of an OLED. Because the emission time of the proposed pixel is extended, it is expected that the proposed pixel not only decreases the peak current of the OLED during the emission period but also reduces flicker. Moreover, the aperture ratio of the proposed pixel is 58.69% for a 50‐in. full‐high‐definition (FHD) condition by minimizing the number of thin‐film transistors (TFTs), capacitors, and control signal lines as seven TFTs, two capacitors, two power lines, and four control lines per unit pixel. Simulation results show that the error in the emission current of the proposed pixel is from ?0.82% to +0.90% when the threshold‐voltage variation of the driving TFT is ±1.00 V, and the maximum variation of the emission current is ?1.35% when a voltage drop in the power line is ?0.50 V on a full‐white‐image display.  相似文献   

16.
Abstract— Large‐sized active‐matrix organic light‐emitting diode (AMOLED) displays require high‐frame‐rate driving technology to achieve high‐quality 3‐D images. However, higher‐frame‐rate driving decreases the time available for compensating Vth in the pixel circuit. Therefore, a new method needs to be developed to compensate the pixel circuit in a shorter time interval. In this work, image quality of a 14‐in. quarter full‐high‐definition (qFHD) AMOLED driven at a frame rate of over 240 Hz was investigated. It was found that image degradation is related to the time available for compensation of the driving TFT threshold voltage. To solve this problem, novel AMOLED pixel circuits for high‐speed operation are proposed to compensate threshold‐voltage variation at frame rates above 240 Hz. When Vth is varied over ±1.0 V, conventional pixel circuits showed current deviations of 22.8 and 39.8% at 240 and 480 Hz, respectively, while the new pixel circuits showed deviations of only 2.6 and 5.4%.  相似文献   

17.
This paper presents a novel compensation pixel circuit for active‐matrix organic light‐emitting diode displays, in which the coupling effect mask technology is developed to compensate the threshold voltage of driving thin‐film transistor whether it is positive or negative. Twenty discrete compensation pixel circuits have been fabricated by In‐Zn‐O thin‐film transistors process. It is measured that the non‐uniformity of the proposed pixel circuit is significantly reduced with an average value of 8.6%. Furthermore, the organic light‐emitting diode emission current remains constant during 6 h continuous operation, which also confirms the validity of the proposed pixel circuit.  相似文献   

18.
Two simple pixel circuits are proposed for high resolution and high image quality organic light‐emitting diode‐on‐silicon microdisplays. The proposed pixel circuits achieve high resolution due to simple pixel structure comprising three n‐type MOSFETs and one storage capacitor, which are integrated into a unit subpixel area of 3 × 9 µm2 using a 90 nm CMOS process. The proposed pixel circuits improve image quality by compensating for the threshold voltage variation of the driving transistors and extending the data voltage range. To verify the performance of the proposed pixel circuits, the emission currents of 24 pixel circuits are measured. The measured emission current deviation error of the proposed pixel circuits A and B ranges from ?2.59% to +2.78%, and from ?1.86% to +1.84%, respectively, which are improved from the emission current deviation error of the conventional current‐source type pixel circuit when the threshold voltage variation is not compensated for, which ranges from ?14.87% to +14.67%. In addition, the data voltage ranges of the proposed pixel circuits A and B are 1.193 V and 1.792 V, respectively, which are 2.38 and 3.57 times wider than the data voltage range of the conventional current‐source type pixel circuit of 0.501 V.  相似文献   

19.
Abstract— We have developed a new multi‐head polymer OLED ink‐jet‐printing technology to make large‐screen OLED television displays. This printer is used to make a 13‐in.‐diagonal 16:9‐format polymer‐OLED prototype driven by an LTPS active matrix with a pixel circuit which compensates for TFT threshold‐voltage variations. A novel scrolling‐bar addressing scheme is used to reduce motion artifacts and to make sparkling images with a high local peak brightness. The scalability of the polymer‐OLED technology to larger sizes for television applications is discussed.  相似文献   

20.
Abstract— A novel active‐matrix organic light‐emitting‐diode (AMOLED) display employing a new current‐mirror pixel circuit, which requires four‐poly‐Si TFTs and one‐capacitor and no additional signal lines, has been proposed and sucessfully fabricated. The experimental results show that a new current mirror can considerably compensate luminance non‐uniformity and scale down a data current more than a conventional current‐mirror circuit in order to reduce the pixel charging time and increase the minimum data current. Compared with a conventional two‐TFT pixel, the luminance non‐uniformity induced by the grain boundaries of poly‐Si TFTs can be decreased considerably from 41% to 9.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号