首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
针对移动机器人难以单纯依赖自身传感器定位的问题,提出了一种分布式感知协作的扩展Monte Carlo定位方法.在定位过程中,机器人根据感知更新前后采样分布信息熵、有效采样数目及采样分布均匀性的变化,适时地从环境传感器的检测模型进行重采样,从而有效减少其位姿估计的不确定性.在算法的具体实现过程中,采用彩色摄像头作为环境传感器,摄像头的参数由机器人进行在线标定;然后依据标定的参数获得摄像头的检测模型.实验验证了该算法在解决全局定位和机器人绑架问题时的有效性.  相似文献   

2.
3.
A correlation between a learning and a fuzzy entropy, using the control of robotic part macro-assembly (part-bringing) task as an example, is introduced. Two intelligent part-bringing algorithms, to bring a part from an initial position to an assembly hole or a receptacle (target or destination) for a purpose of a part mating in a partially unknown environment containing obstacles, related to a robotic part assembly task are introduced. An entropy function, which is a useful measure of the variability and the information in terms of uncertainty, is introduced to measure its overall performance of a task execution related to the part-bringing task. The degree of uncertainty associated with the part-bringing task is used as an optimality criterion, e.g. minimum entropy, for a specific task execution. Fuzzy set theory, well-suited to the management of uncertainty, is used to address the uncertainty associated with the macro-assembly procedure. In the first algorithm, a macro-assembly, locating various shaped assembly holes (targets) in the workspace corresponding to the shapes of the parts and then bringing the part to the corresponding target, despite existing obstacles is introduced. This is accomplished by combining a neural network control strategy coordinating with a mobile rectilinear grid composed of optical sensors as well as fuzzy optimal controls. Depending on topological relationships among the part's present position, the position of obstacles, and the target position in the workspace, a specific rulebase from a family of distinct fuzzy rulebases for avoiding obstacles is activated. The higher the probability, the input pattern (or value) of the neural network to be identified as the desired output is, the lower the fuzzy entropy is. Through the fuzzy entropy, a degree of identification between the input pattern and the desired output of the neural network can be measured. In the second algorithm, a macro-assembly with a learning algorithm and a sensor fusion for bringing the part to the target is introduced. By employing a learning approach, the uncertainty associated with the part-bringing task is reduced. The higher the probability of success is, the lower the fuzzy entropy is. The results show clearly the correlation between a probability of success related to the task execution of the part-bringing and the fuzzy entropy, and also show the effectiveness of above methodologies. The proposed technique is not only a useful tool to measure the behaviour of the learning but applicable to a wide range of robotic tasks including motion planning, and pick and place operations with various shaped parts and targets.  相似文献   

4.
A collection of static and mobile radiation sensors is tasked with deciding, within a fixed time interval, whether a moving target carries radioactive material. Formally, this is a problem of detecting weak time-inhomogeneous Poisson signals (target radiation) concealed in another Poisson signal (naturally occurring background radiation). Each sensor locally processes its observations to form a likelihood ratio, which is transmitted once—at the end of the decision interval—to a fusion center. The latter combines the transmitted information to optimally (in the Neyman–Pearson sense) decide whether the measurements contain a radiation signal, or just noise. We provide a set of analytically derived upper bounds for the probabilities of false alarm and missed detection, which are used to design threshold tests without the need for computationally intensive Monte Carlo simulations. These analytical bounds couple the physical quantities of interest to facilitate planning the motion of the mobile sensors for minimizing the probability of missed detection. The network reconfigures itself in response to the target motion, to allow more accurate collective decisions within the given time interval. The approach is illustrated in numerical simulations, and its effectiveness demonstrated in experiments that emulate the statistics of nuclear emissions using a pulsed laser.  相似文献   

5.
针对以蒙特卡罗算法为基础的无线传感器网定位算法普遍存在定位精度和采样效率低的问题,提出了一种基于测距的蒙特卡罗盒(R-MCB)定位算法。通过测距信息构造修正的包含有约束条件的方形边界框,使用从强约束条件中除去弱约束条件的启发法来提高采样效率,然后进行样本过滤和加权处理,并通过校准减少距离误差实现精确的定位。该R-MCB定位算法允许节点是静止或移动的,并且能够与可进行测距的节点和没有测距能力的节点协同工作。通过在传感器硬件上进行真实模拟定位算法证明,在多数情况下该R-MCB算法的定位误差,均要比WMCL算法(加权蒙特卡罗定位算法)的定位误差低10%左右。  相似文献   

6.
This paper presents an automated system for multiple sensor placement based on the coordinated decisions of independent, intelligent agents. The problem domain is such that a single sensor system would not provide adequate information for a given sensor task. Hence, it is necessary to incorporate multiple sensors in order to obtain complete information. The overall goal of the system is to provide the surface coverage necessary to perform feature inspection on one or more target objects in a cluttered scene. This is accomplished by a group of cooperating intelligent sensors. In this system, the sensors are mobile, the target objects are stationary and each agent controls the position of a sensor and has the ability to communicate with other agents in the environment. By communicating desires and intentions, each agent develops a mental model of the other agents' preferences, which is used to avoid or resolve conflict situations. In this paper we utilize cameras as the sensors. The experimental results illustrate the feasibility of the autonomous deployment of the sensors and that this deployment can occur with sufficient accuracy as to allow the inspection task to be performed.  相似文献   

7.
基于粒子滤波的二元无线传感器网络分布式目标跟踪研究   总被引:3,自引:1,他引:2  
针对二元无线传感器网络中利用粒子滤波进行集中式跟踪的不足,基于动态分簇结构,研究了基于粒子滤波的二元无线传感器网络分布式目标跟踪算法。算法每一时刻根据目标的状态只激活少量的节点参与探测跟踪,其它节点处于休眠状态以节省能量。最后,利用计算机进行了Monte Carlo仿真,仿真结果表明,算法在不损失跟踪精度的情况可以减少能耗和计算量,从而延长网络使用寿命。  相似文献   

8.
There is growing realization that on-line model maintenance is the key to realizing long term benefits of a predictive control scheme. In this work, a novel intelligent nonlinear state estimation strategy is proposed, which keeps diagnosing the root cause(s) of the plant model mismatch by isolating the subset of active faults (abrupt changes in parameters/disturbances, biases in sensors/actuators, actuator/sensor failures) and auto-corrects the model on-line so as to accommodate the isolated faults/failures. To carry out the task of fault diagnosis in multivariate nonlinear time varying systems, we propose a nonlinear version of the generalized likelihood ratio (GLR) based fault diagnosis and identification (FDI) scheme (NL-GLR). An active fault tolerant NMPC (FTNMPC) scheme is developed that makes use of the fault/failure location and magnitude estimates generated by NL-GLR to correct the state estimator and prediction model used in NMPC formulation. This facilitates application of the fault tolerant scheme to nonlinear and time varying processes including batch and semi-batch processes. The advantages of the proposed intelligent state estimation and FTNMPC schemes are demonstrated by conducting simulation studies on a benchmark CSTR system, which exhibits input multiplicity and change in the sign of steady state gain, and a fed batch bioreactor, which exhibits strongly nonlinear dynamics. By simulating a regulatory control problem associated with an unstable nonlinear system given by Chen and Allgower [H. Chen, F. Allgower, A quasi infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica 34(10) (1998) 1205–1217], we also demonstrate that the proposed intelligent state estimation strategy can be used to maintain asymptotic closed loop stability in the face of abrupt changes in model parameters. Analysis of the simulation results reveals that the proposed approach provides a comprehensive method for treating both faults (biases/drifts in sensors/actuators/model parameters) and failures (sensor/ actuator failures) under the unified framework of fault tolerant nonlinear predictive control.  相似文献   

9.
针对移动传感器网络中目标监测的节点部署问题,为保证在无覆盖漏洞的同时减少覆盖冗余,以六边形棋盘结构(HTL)为网络的目标部署结构,提出一种基于群集控制的分布式部署算法.该方法只需目标的相对方向和邻居节点的相对位置、速度信息,可不依赖于通信.仿真结果表明,所提出的算法对静止和运动目标均有效,与基于虚拟力的算法相比所需信息更少,部署更均匀,对HTL的逼近效果更好,覆盖更优.  相似文献   

10.
Leak and backflow detections are essential aspects of Water Distribution Systems (WDSs) monitoring and are commonly fulfilled using approaches that are based on static sensor networks and point measurements. Alternatively, we propose a mobile, wireless sensor network solution composed of mobile sensor nodes that travel freely inside the pipes with the water flow, collect and transmit measurements in near-realtime (called sensors) and static access points (called beacons). This study complements the tremendous progress in mobile sensor technology. We formulate the sensor and beacon optimal placement task as a Mixed Integer Nonlinear Programming (MINLP) problem to maximize localization accuracy with budget constraint. Given the high time complexity of MINLP formulation, we propose a disjoint scheme that follows the strategy of splitting the sensor and beacon placement problems and determining the respective number of sensors and beacons by exhaustive search in linear time.  相似文献   

11.
Localization is a key issue for a mobile robot, in particular in environments where a globally accurate positioning system, such as GPS, is not available. In these environments, accurate and efficient robot localization is not a trivial task, as an increase in accuracy usually leads to an impoverishment in efficiency and viceversa. Active perception appears as an appealing way to improve the localization process by increasing the richness of the information acquired from the environment. In this paper, we present an active perception strategy for a mobile robot provided with a visual sensor mounted on a pan-tilt mechanism. The visual sensor has a limited field of view, so the goal of the active perception strategy is to use the pan-tilt unit to direct the sensor to informative parts of the environment. To achieve this goal, we use a topological map of the environment and a Bayesian non-parametric estimation of robot position based on a particle filter. We slightly modify the regular implementation of this filter by including an additional step that selects the best perceptual action using Monte Carlo estimations. We understand the best perceptual action as the one that produces the greatest reduction in uncertainty about the robot position. We also consider in our optimization function a cost term that favors efficient perceptual actions. Previous works have proposed active perception strategies for robot localization, but mainly in the context of range sensors, grid representations of the environment, and parametric techniques, such as the extended Kalman filter. Accordingly, the main contributions of this work are: i) Development of a sound strategy for active selection of perceptual actions in the context of a visual sensor and a topological map; ii) Real time operation using a modified version of the particle filter and Monte Carlo based estimations; iii) Implementation and testing of these ideas using simulations and a real case scenario. Our results indicate that, in terms of accuracy of robot localization, the proposed approach decreases mean average error and standard deviation with respect to a passive perception scheme. Furthermore, in terms of efficiency, the active scheme is able to operate in real time without adding a relevant overhead to the regular robot operation.  相似文献   

12.
娄柯  崔宝同李纹 《控制与决策》2013,28(11):1637-1642

针对移动传感器网络中的目标跟踪问题, 以及现有控制策略在保持网络拓扑结构连通性和降低能量消耗方面存在的不足, 提出一种基于蜂拥控制的移动传感器网络目标跟踪算法. 首先, 利用网络中部分节点检测目标, 并使用卡尔曼一致性滤波算法估计目标的状态, 在获得比较精确的估计状态的同时降低能量消耗; 然后, 在蜂拥控制下传感器网络始终保持拓扑结构连通性和目标对网络可见, 同时避免节点之间发生碰撞. 仿真结果验证了所提出算法的有效性.

  相似文献   

13.
We study the problem of sensor-scheduling for target tracking—to determine which sensors to activate over time to trade off tracking performance with sensor usage costs. We approach this problem by formulating it as a partially observable Markov decision process (POMDP), and develop a Monte Carlo solution method using a combination of particle filtering for belief-state estimation and sampling-based Q-value approximation for lookahead. To evaluate the effectiveness of our approach, we consider a simple sensor-scheduling problem involving multiple sensors for tracking a single target.  相似文献   

14.
针对无线传感器网络中移动节点的定位特性,提出了一种利用序列相似度改进的蒙特卡洛定位算法.该算法先利用各信标节点的信号强度值对移动节点初定位,优化原算法的采样区域.同时将信号值存储为目标序列,通过比较信标节点和样本点间序列与目标序列的相似度过滤样本点,并以相似度值作为加权标准计算移动节点坐标.仿真结果表明,与其他算法相比,在不同的信标节点密度下,定位误差减少了1%~10%,在不同的节点最大移动速度的情况下,定位误差减少了30%~40%.  相似文献   

15.
A wireless sensor network (WSN) usually consists of a large number of battery-powered low-cost sensors with limited data collection and processing capacity. In order to prolong the lifetime of the WSN with a target error performance, a novel clustered distributed coding framework, referred to as distributed multiple-sensor cooperative turbo coding (DMSCTC), is developed for a large-scale WSN with sensor grouped in cooperative cluster. In the proposed DMSCTC scheme, a simple forward error correction is employed at each sensor and a simple multi-sensor joint coding is adopted at the cluster head, while complicated joint iterative decoding is implemented only at the data collector. The proposed DMSCTC scheme achieves extra distributed coding gain and cooperative spatial diversity without introducing extra complexity burden on the sensors by transferring the complicated joint decoding process to the data collector. With the proposed scheme, the WSN can achieve the target error performance with less power consumption, thus prolonging its lifetime. The error performance and energy efficiency of the proposed DMSCTC scheme are analyzed, and followed by Monte Carlo simulations. Both analytical and simulation results show that the DMSCTC can substantially improve the energy efficiency of the clustered WSN.  相似文献   

16.
基于多传感器信息融合的移动机器人快速精确自定位   总被引:3,自引:1,他引:2  
通过分析全向视觉、电子罗盘和里程计等传感器的感知模型,设计并实现了一种给定环境模型下移动机器人全局自定位算法.该算法利用蒙特卡罗粒子滤波,融合多个传感器在不同观测点获取的观测数据完成机器人自定位.与传统的、采用单一传感器自定位的方法相比,它把多个同质或异质传感器所提供的不完整测量及相关联数据库中的信息加以综合,降低单个...  相似文献   

17.
Bayesian max-margin models have shown superiority in various practical applications, such as text categorization, collaborative prediction, social network link prediction and crowdsourcing, and they conjoin the flexibility of Bayesian modeling and predictive strengths of max-margin learning. However, Monte Carlo sampling for these models still remains challenging, especially for applications that involve large-scale datasets. In this paper, we present the stochastic subgradient Hamiltonian Monte Carlo (HMC) methods, which are easy to implement and computationally efficient. We show the approximate detailed balance property of subgradient HMC which reveals a natural and validated generalization of the ordinary HMC. Furthermore, we investigate the variants that use stochastic subsampling and thermostats for better scalability and mixing. Using stochastic subgradient Markov Chain Monte Carlo (MCMC), we efficiently solve the posterior inference task of various Bayesian max-margin models and extensive experimental results demonstrate the effectiveness of our approach.  相似文献   

18.
A novel networked data-fusion method is developed for the target tracking in wireless sensor networks (WSNs). Specifically, this paper investigates data fusion scheme under the communication constraint between the fusion center and each sensor. Such a message constraint is motivated by the bandwidth limitation of the communication links, fusion center, and by the limited power budget of local sensors. In the proposed scheme, each sensor collects one noise-corrupted sample, performs a quantizing operation, and transmits quantized message to the fusion center. Then the fusion center combines the received quantized messages to produce a final estimate. The novel data-fusion method is based on the quantized measurement innovations and decentralized Kalman filtering (DKF) with feedback. For the proposed algorithm, the performance analysis of the estimation precision is provided. Finally, Monte Carlo simulations show the effectiveness of the proposed scheme.  相似文献   

19.
A key challenge for an autonomous mobile robot is to estimate its location according to the available information. A particular aspect of this task is the global localization problem. In our previous work, we developed an algorithm based on the Differential Evolution method that solves this problem in 2D and 3D environments. The robot’s pose is represented by a set of possible location estimates weighted by a fitness function. The Markov Chain Monte Carlo algorithms have been successfully applied to multiple fields such as econometrics or computing science. It has been demonstrated that they can be combined with the Differential Evolution method to solve efficiently many optimization problems. In this work, we have combined both approaches to develop a global localization filter. The algorithm performance has been tested in simulated and real maps. The population requirements have been reduced when compared to the previous version.  相似文献   

20.
在混合无线传感器网络中,移动传感器节点最耗能的操作是移动,如何减少移动传感器节点的移动距离同时能让其完成任务是一个富有挑战性的研究课题。本文提出了一个移动传感器节点的派遣算法,旨在均衡各个移动传感器节点的移动负载,并且能按优先级响应事件地点,适用于任意数量的移动传感器节点和事件地点的情况。当移动传感器节点数量大于事件地点数量时,将其转化为一个带权完全二分图上的最大匹配问题。当事件地点数量大于移动传感器节点的数量时,本文提出的算法先将事件地点聚类分簇,然后派遣移动传感器节点到各个簇中分别完成访问任务。为了减少传感器节点之间的消息传输量,本文在集中式算法的基础上又提出了一个分布式算法。仿真实验结果表明本文提出的分布式算法能有效降低传感器节点之间的消息传输量,算法能够使得整个混合无线传感器网络的生存寿命延长20%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号