首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this paper, an adaptive disturbance-rejection proportional–integral–differential (PID) control method is proposed for a class of nonlinear systems. First, PID-type criterion is introduced in a model-free adaptive control (MFAC) framework, which gives an optimal control interpretation for PID controller. Then, the design of adaptive disturbance rejection PID is proposed based on this new interpretation to realize controller gain auto-tuning. Due to the ingenious integration of active disturbance rejection and adaptive mechanism, the proposed adaptive disturbance rejection PID control scheme exhibits better control performance than MFAC case. Furthermore, the boundedness of controller gain, the convergence of tracking error and the bounded-input–bounded-output stability are proved for the proposed control system. Finally, the effectiveness of the proposed method is verified by numerical simulation.  相似文献   

2.
A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper. The T-S fuzzy model is employed to represent the systems. First, the concept of the so-called parallel distributed compensation (PDC) and linear matrix inequality (LMI) approach are employed to design the state feedback controller without considering the error caused by fuzzy modeling. Sufficient conditions with respect to decay rate α are derived in the sense of Lyapunov asymptotic stability. Finally, the error caused by fuzzy modeling is considered and the input-tostate stable (ISS) method is used to design the adaptive compensation term to reduce the effect of the modeling error. By the small-gain theorem, the resulting closed-loop system is proved to be input-to-state stable. Theoretical analysis verifies that the state converges to zero and all signals of the closed-loop systems are bounded. The effectiveness of the proposed controller design methodology is demonstrated through numerical simulation on the chaotic Henon system.  相似文献   

3.
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.  相似文献   

4.
The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper. The recursive design procedure of the proposed controller is much simpler than that of the existing controller based on conventional adaptive backstepping method. In the system, the damping coefficient is measured inaccurately, and the reactance of transmission line also contains a few uncertainties. A nonlinear robust controller and parameter updating laws are obtained simultaneously. The system does not need to be linearized, and the closed-loop error system is guaranteed to be asymptotically stable. The design procedure and simulation results demonstrate the effectiveness of the proposed design.  相似文献   

5.
The event-triggered fault accommodation problem for a class of nonlinear uncertain systems is considered in this paper.The control signal transmission from the controller to the system is determined by an event-triggering scheme with relative and constant triggering thresholds.Considering the event-induced control input error and system fault threat,a novel eventtriggered active fault accommodation scheme is designed,which consists of an event-triggered nominal controller for the time period before detecting the occurrence of faults and an adaptive approximation based event-triggered fault accommodation scheme for handling the unknown faults after detecting the occurrence of faults.The closed-loop stability and inter-event time of the proposed fault accommodation scheme are rigorously analyzed.Special cases for the fault accommodation design under constant triggering threshold are also derived.An example is employed to illustrate the effectiveness of the proposed fault accommodation scheme.  相似文献   

6.
This paper presents a novel control method for accommodating actuator faults in a class of multiple-input multiple-output (MIMO) nonlinear uncertain systems.The designed control scheme can tolerate both the time-varying lock-in-place and loss of effectiveness actuator faults.In each subsystem of the considered MIMO system,the controller is obtained from a backstepping procedure;an adaptive fuzzy approximator with minimal learning parameterization is employed to approximate the package of unknown nonlinear functions in each design step.Additional control effort is taken to deal with the approximation error and external disturbance together.It is proven that the closed-loop stability and desired tracking performance can be guaranteed by the proposed control scheme.An example is used to show the effectiveness of the designed controller.  相似文献   

7.
Adaptive fuzzy dynamic surface control for uncertain nonlinear systems   总被引:1,自引:1,他引:0  
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.  相似文献   

8.
This paper presents an adaptive control scheme with an integration of sliding mode control into the $\mathcal{L}_1$ adaptive control architecture, which provides good tracking performance as well as robustness against matched uncertainties. Sliding mode control is used as an adaptive law in the $\mathcal{L}_1$ adaptive control architecture, which is considered as a virtual control of error dynamics between estimated states and real states. Low-pass filtering mechanism in the control law design prevents a discontinuous signal in the adaptive law from appearing in actual control signal while maintaining control accuracy. By using sliding mode control as a virtual control of error dynamics and introducing the low-pass filtered control signal, the chattering effect is eliminated. The performance bounds between the close-loop adaptive system and the closed-loop reference system are characterized in this paper. Numerical simulation is provided to demonstrate the performance of the presented adaptive control scheme.  相似文献   

9.
This paper provides a way to optimize the overall disturbances rejection performance of the adaptive control system in the presence of unknown external disturbances.Especially,the updatable non-empty admissible model set,which is consistent to the a priori knowledge of the plant parameter and the online measurements,is computed.With the overall system performance as the criteria,the nominal model is optimally chosen within the admissible model set.The optimal nominal model is subsequently used to synthesize the optimal closed-loop controller based on the 1 design methodology.Combining the above two aspects,an optimal adaptive control scheme is proposed.Because of the consistency of the identification criteria and control object,the adaptive control scheme proposed in this paper can achieve the overall optimal disturbances rejection performance,and the effect of the interplay between the identification and control of the adaptive system can be handled effectively.In addition,the computable optimal performance is also provided.  相似文献   

10.
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.  相似文献   

11.
针对一类含有未建模动态的关联系统,考虑了降阶的鲁棒分散自适应反推控制问题.首先通过一系列坐标变换,将原系统重新参数化,然后引入降阶观测器,得到一个误差系统.基于该系统,给出了一种降阶自适应反推控制器的设计方案.证明了自适应控制系统的所有信号全局一致有界,调节误差渐近收敛到零.控制器阶次的降低使得本文的设计方案更具应用价值.  相似文献   

12.
In this paper, an adaptive control method is presented for a class of first-order systems with nonlinear parameterization. The main features of the scheme are that a novel integral-type Lyapunov function is developed for constructing an asymptotically stable adaptive controller, and output tracking error bounds are provided to evaluate the control performance of the adaptive system. The design procedure and the effectiveness of the proposed controller are illustrated through an example study  相似文献   

13.
In this paper a new robust adaptive control scheme for mechanical manipulators is presented. The design basically consists of, on the one hand, a composite adaptive controller which implements a feedback law that compensates the modelled dynamics and, on the other hand, a nonlinear sliding mode control law that overcomes the unmodelled dynamics and noise. It is proved that the resulting closed-loop system is stable and that the trajectory-tracking error converges to zero in finite time. Moreover, an upper bound of this error convergence time is calculated. Finally, the design is evaluated by means of simulations.  相似文献   

14.
In this paper, a novel adaptive fuzzy control scheme is proposed for a class of uncertain single-input and single-output (SISO) nonlinear time-delay systems with the lower triangular form. Fuzzy logic systems are used to approximate unknown nonlinear functions, then the adaptive fuzzy tracking controller is constructed by combining Lyapunov-Krasovskii functionals and the backstepping approach. The proposed controller guarantees uniform ultimate boundedness of all the signals in the closed-loop system, while the tracking error converges to a small neighborhood of the origin. An advantage of the proposed control scheme lies in that the number of adaptive parameters is not more than the order of the systems under consideration. Finally, simulation studies are given to demonstrate the effectiveness of the proposed design scheme.  相似文献   

15.
针对电子节气门系统的状态变量不完全可测量, 设计了一个基于观测器的输出反馈电子节气门控制系统. 该系统由一个估计不可测量状态的降阶观测器和一个非线性状态反馈控制器组成. 同时在控制器中引入了跟踪误差的积分项以抑制跟踪静差. 将建模误差和观测器误差等不确定性看作外部扰动, 在输入到状态稳定性(Input to state stability, ISS)理论框架下分析了跟踪误差系统的鲁棒性, 并据此给出了选择控制器参数的指导性原则.仿真及实验结果表明, 基于观测器的输出反馈控制器能够很好地实现电子节气门的跟踪控制.  相似文献   

16.
本文针对一类执行器受Preisach磁滞约束的不确定非线性系统, 提出一种基于神经网络的直接自适应控制 方案, 旨在解决系统的预定精度轨迹跟踪问题. 由于Preisach算子与系统动态发生耦合, 导致算子输出信号不可测 量, 给磁滞的逆补偿造成了困难. 为解决此问题, 本文首先将Preisach模型进行分解, 以提取出控制命令信号用于 Backstepping递归设计, 并在此基础上融合一类降阶光滑函数与直接自适应神经网络控制策略, 形成对磁滞非线性 和被控对象非线性的强鲁棒性能, 且所设计方案仅包含一个需要在线更新的自适应参数, 同时可保证Lyapunov函数 时间导数的半负定性. 通过严格数学分析, 已证明该方案不仅保证闭环系统所有信号均有界, 而且输出跟踪误差随 时间渐近收敛到用户预定区间. 基于压电定位平台的半物理仿真实验进一步验证了所提出控制方案的有效性.  相似文献   

17.
针对一类不确定非线性系统, 基于变结构控制原理, 并利用具有非线性可调参数的模糊系统去逼近过程未知函数, 提出一种具有模糊监督控制器的积分变结构间接自适应控制方案. 该方案通过监督控制器保证闭环系统所有信号有界. 进一步, 通过引入最优逼近误差的自适应补偿项来消除建模误差的影响. 理论分析证明了跟踪误差收敛到零. 仿真结果表明了该方法的有效性.  相似文献   

18.
一类多变量非线性动态系统的鲁棒自适应模糊控制   总被引:5,自引:0,他引:5  
对一类非线性多变量未知动态系统,提出了一种自适应模糊控制策略.策略中采用 IF-THEN推理规则来构造模糊逻辑系统,实现对系统中未知函数的估计,在建模误差为零的 条件下设计状态反馈控制器及参数的自适应律.分析了当存在建模误差时,闭环系统的稳定 性和鲁棒性.  相似文献   

19.

This paper presents a function approximation technique based immersion and invariance adaptive controller for chaos synchronization between nonidentical systems with unknown dynamics. In the proposed control scheme, the control system is reconstructed as the combination of a controllable linear system and a variation term from the original system. The variation term is treated as time-varying uncertainty and approximated by a group of weighted chosen basis functions. The immersion and invariance methodology is employed to design the adaptive control law such that both the synchronization error and uncertainty estimation error converge to zero. Two typical chaos synchronization problems are used in numerical simulations to verify the effectiveness and superiority of the proposed controller.

  相似文献   

20.
Adaptive CMAC-based supervisory control for uncertain nonlinear systems.   总被引:7,自引:0,他引:7  
An adaptive cerebellar-model-articulation-controller (CMAC)-based supervisory control system is developed for uncertain nonlinear systems. This adaptive CMAC-based supervisory control system consists of an adaptive CMAC and a supervisory controller. In the adaptive CMAC, a CMAC is used to mimic an ideal control law and a compensated controller is designed to recover the residual of the approximation error. The supervisory controller is appended to the adaptive CMAC to force the system states within a predefined constraint set. In this design, if the adaptive CMAC can maintain the system states within the constraint set, the supervisory controller will be idle. Otherwise, the supervisory controller starts working to pull the states back to the constraint set. In addition, the adaptive laws of the control system are derived in the sense of Lyapunov function, so that the stability of the system can be guaranteed. Furthermore, to relax the requirement of approximation error bound, an estimation law is derived to estimate the error bound. Finally, the proposed control system is applied to control a robotic manipulator, a chaotic circuit and a linear piezoelectric ceramic motor (LPCM). Simulation and experimental results demonstrate the effectiveness of the proposed control scheme for uncertain nonlinear systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号