首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 313 毫秒
1.
针对无人机进行目标跟踪时,目标存在尺度变化大、易受遮挡、相似物干扰等问题,在SiamCAR的基础上提出IMPSiamCAR算法。该算法使用改进的ResNet50网络提取目标特征,引入通道注意力机制使模型学习不同通道的语义信息,按特征的重要程度为通道分配不同的权重,使算法能更加关注存在跟踪目标的区域;再将融合后的目标特征送入区域回归网络进行正负样本分类、中心度计算及边界框回归;最后得到每一帧中目标的位置。在UAV123数据集与OTB100数据集上测试的实验结果表明,提出的算法与对比算法相比,有更高的跟踪精度与成功率,能较好地应对遮挡、相似物干扰、尺度变化等挑战;并且在VOT2018和UAV123数据集上进行实时性测试的结果表明,所提算法可以满足无人机实时性的要求。  相似文献   

2.
针对基于孪生网络的目标跟踪中大部分方法是利用主干网络的最后一层语义特征来计算相似度,而单一地利用深层特征空间往往是不够的问题,提出基于孪生网络的渐进注意引导融合跟踪方法.首先采用主干网络提取深层和浅层特征信息;然后通过特征聚合模块,以自顶向下的方法去编码融合深层语义信息以及浅层空间结构信息,并利用注意力模块减少融合产生的特征冗余;最后计算目标和搜索区域的匹配相似度,以进行目标跟踪.在加入注意力模块后,跟踪器可以选择性地整合多层特征信息,提升了跟踪器的性能.在OTB2013,OTB50,OTB2015,VOT2016以及VOT2017这5个公共基准数据库上,与SiamDW等方法进行实验的结果表明,文中方法能够有效地提升跟踪的精度及成功率.  相似文献   

3.
提出融合卷积通道注意力机制、堆叠通道注意力机制和空间注意力机制的孪生网络跟踪器(ThrAtt-Siam)来提升跟踪性能。ThrAtt-Siam跟踪器以SiameseFC为基础,通过在低卷积层融合卷积通道注意力机制、两个特征图与两个卷积块,加强目标物体特征提取,提高跟踪器对背景特征抗干扰能力和辨别能力;在目标图像分支融合堆叠通道注意力机制与空间注意力机制,其中堆叠通道注意力机制可有效区分有用特征与无用特征,同时针对不同通道的有用特征进行提取,空间注意力机制可有效地补充目标物体特征在通道空间中的信息,能够更好地对目标进行定位。在OTB2015和VOT2017数据集上的实验结果表明,ThrAtt-Siam跟踪器对目标物体形变、低分辨率和遮挡问题都取得了较好的跟踪准确率和成功率。  相似文献   

4.
李生武  张选德 《计算机应用》2020,40(8):2219-2224
为了解决多域卷积神经网络(MDNet)在目标快速移动和外观剧烈变化时发生的模型漂移问题,提出了自注意力多域卷积神经网络(SAMDNet),通过引入自注意力机制从通道和空间两个维度来提升追踪网络的性能。首先,利用空间注意力模块将所有位置上的特征的加权总和选择性地聚合到特征图中的所有位置上,使得相似的特征彼此相关;然后,利用通道注意力模块整合所有特征图来选择性地强调互相关联的通道的重要性;最后,融合得到最终的特征图。此外,针对MDNet算法因训练数据中存在较多相似但属性不同的序列所造成的网络模型分类不准的问题,构造了复合损失函数。该复合损失函数由分类损失函数和实例判别损失函数组成,首先,用分类损失函数来统计分类的损失值;然后,利用实例判别损失函数来提高目标在当前视频序列中的权重,抑制其在其他序列中的权重;最后,融合两项损失作为模型的最终损失。在目前广泛采用的测试基准数据集OTB50和OTB2015上进行实验,结果表明所提出的算法在成功率指标上相比2015年视觉目标跟踪挑战(VOT2015)的冠军算法MDNet分别提高了1.6个百分点和1.4个百分点,在精确率和成功率指标上优于连续域卷积相关滤波(CCOT)算法,在OTB50上的精确率指标优于高效卷积操作(ECO)算法,验证了该算法的有效性。  相似文献   

5.
为有效解决目标跟踪在面对大尺度形变、完全遮挡、背景干扰等复杂场景时出现漂移或者跟踪丢失的问题, 本文提出了一种基于多支路的孪生网络目标跟踪算法(SiamMB). 首先, 通过增加邻近帧支路的网络鲁棒性增强方法以提高对搜索帧中目标特征的判别能力, 增强模型的鲁棒性. 其次, 融合空间注意力网络, 对不同空间位置的特征施加不同的权重, 并着重关注空间位置上对目标跟踪有利的特征, 提升模型的辨别力. 最后, 在OTB2015和VOT2018数据集上的进行评估, SiamMB跟踪精度和成功率分别达到了91.8%和71.8%, 相比当前主流的跟踪算法取得了良好的竞争力.  相似文献   

6.
基于孪生区域候选网络的无人机指定目标跟踪   总被引:1,自引:0,他引:1  
钟莎  黄玉清 《计算机应用》2021,41(2):523-529
基于孪生网络的目标跟踪目前取得了阶段性进展,即克服了孪生网络的空间不变性在深度网络中的限制,然而其仍存在外观变化、尺度变化、遮挡等因素影响跟踪性能。针对无人机(UAV)指定目标跟踪中的目标尺度变化大、目标运动模糊及目标尺度小等问题,提出了基于孪生区域候选注意力机制网络的跟踪算法Attention-SiamRPN+。首先,采用改进的深度残差网络ResNet-50作为特征提取器来提取特征;接着,使用通道注意力机制模块筛选残差网络提取出的不同通道特征图的语义属性,并重新为不同通道特征分配相应权值;然后,两个区域候选网络(RPN)进行分层融合,而RPN模块包括特征图的逐通道深度互相关、正负样本分类和边界框回归;最后框选出目标位置。在VOT2018平台上进行测试,所提算法的准确率和预期平均重叠率(EAO)分别为59.4%和39.5%;在OTB2015平台上采用一次通过评估模式进行实验,该算法的成功率和精度分别为68.7%和89.4%。实验结果表明所提算法的评估结果优于近年优秀的三种相关滤波跟踪算法和孪生网络跟踪算法,且该算法应用于UAV指定目标的跟踪上时具有良好的鲁棒性和实时处理速度。  相似文献   

7.
现有深度网络跟踪算法应对相似物体干扰、尺度变化、形变模糊、遮挡等问题存在挑战,为此提出一种融合多模板注意力机制的鲁棒深度网络算法.在SiamFc深度网络分支中构建通道和空间多模板注意力机制,以加强网络对目标特征的提取能力;融合浅层和深层卷积特征实现跟踪目标的精确聚焦,以克服相似物干扰问题;采用自适应回归网络学习目标采样点与目标边界之间的距离,实现目标区域的动态预测,有效应对目标尺度变化问题.另外,通过计算分类特征的APCE均值和最大值建立模板在线更新策略,实现网络自适应目标形变模糊与遮挡等问题.对OTB 100和VOT 2016等公开数据集的测试结果表明,与目前先进的SiamFc及改进方法相比,所提出算法在动态目标跟踪的准确率和成功率上均得到有效提升,具有强鲁棒性能.  相似文献   

8.
为了解决目标跟踪过程中复杂场景下精度不高以及网络训练时正负样本不平衡的问题,提出一种结合注意力机制和特征金字塔的孪生卷积神经网络目标跟踪算法。该算法采用孪生卷积神经网络提取图像特征,并在特征提取过程中引入通道注意力机制,提升卷积特征的表征能力;利用特征金字塔模型对高低层卷积特征进行融合,将融合后的特征进行相似性学习;通过使用focal loss函数,来解决训练正负样本不平衡的问题。在OTB100和VOT2015数据集上对该算法进行实验验证与分析,结果表明,该算法精度和成功率都取得了较好的效果,具有较好的应用价值。  相似文献   

9.
一般孪生网络跟踪算法中目标模板不会更新,模板分支与搜索分支在计算时相互独立,无法进行鲁棒跟踪,使用深度互相关来融合两分支的特征有着容易被干扰物欺骗、激活通道数少、对目标边界的分辨能力较弱,且不能充分受益于大规模的离线训练,为此提出一种基于注意力机制和不对称卷积的目标跟踪算法。设计增强注意力网络增强和传递分支信息。采用不对称卷积来代替深度互相关,使用有效的参数学习如何更好地互相关。所提算法在OTB100、LaSOT、VOT2019上做了对比实验,实验结果表明,所提算法表现较好,性能优于现有的多个先进跟踪器。  相似文献   

10.
李虹瑾  彭力 《控制与决策》2023,38(9):2554-2562
随着目标跟踪技术在多种视觉任务中的广泛应用,跟踪算法的实时性变得越来越重要.全卷积孪生网络跟踪算法(SiamFC)虽然在跟踪速度方面较为理想,但在复杂的跟踪环境下很容易出现跟踪漂移.为了能在提高算法精度的同时保证实时性,提出一种基于负样本挖掘与特征融合的高速跟踪算法.首先,为了学到更深层次特征,又不过多增加额外参数运算,使用增加了剪裁层的轻量级网络ShuffleNetV2进行特征提取,提升跟踪速度;其次,在离线训练阶段引入不同种类的负样本对,加强对语义信息的学习,从而提升模型的特征判别能力;最后,为了得到更高质量的响应图,提出一种多尺度特征融合策略,充分利用浅层与深层特征,提高跟踪精度.在OTB100和VOT2018两个数据集上与其他跟踪算法进行对比实验,结果表明:所提出算法较基准算法SiamFC在各项指标上有大幅度提升,在两个数据集下分别收获8.3%和7.9%的增益;同时在NIVIDA GTX l070下的速度可达114FPS.  相似文献   

11.
基于Transformer的视觉目标跟踪算法能够很好地捕获目标的全局信息,但是,在对目标特征的表述上还有进一步提升的空间.为了更好地提升对目标特征的表达能力,提出一种基于混合注意力的Transformer视觉目标跟踪算法.首先,引入混合注意力模块捕捉目标在空间和通道维度中的特征,实现对目标特征上下文依赖关系的建模;然后,通过多个不同空洞率的平行空洞卷积对特征图进行采样,以获得图像的多尺度特征,增强局部特征表达能力;最后,在Transformer编码器中加入所构建的卷积位置编码层,为跟踪器提供精确且长度自适应的位置编码,提升跟踪定位的精度.在OTB100、VOT2018和LaSOT等数据集上进行大量实验,实验结果表明,通过基于混合注意力的Transformer网络学习特征间的关系,能够更好地表示目标特征.与其他主流目标跟踪算法相比,所提出算法具有更好的跟踪性能,且能够达到26帧/s的实时跟踪速度.  相似文献   

12.
为了解决目标跟踪过程中因运动模糊和低分辨率导致跟踪效果变差的问题,提出一种基于条件对抗网和层次特征融合的目标跟踪算法。使用条件对抗生成网络模型(DeblurGAN-v2),对输入的低分辨率视频帧去模糊;使用改进型VGG-19网络提取目标候选区域的Conv2、Conv4、Conv6三层特征,将孪生网络提取到的低层结构特征、中层特征与高层语义特征进行融合,以提高特征的表征能力。在目标跟踪评估数据集OTB2015与VOT2018上的实验结果表明,与SiamFC、SiamDW等其他算法相比,该算法具有更高的准确性,能够适应目标遮挡运动模糊、外观变化及背景干扰等复杂情况。相比于SiamFC,改进算法在OTB2015数据集上成功率提升5.5个百分点,在VOT2018数据集上EAO提升16.4个百分点。  相似文献   

13.
费大胜  宋慧慧  张开华 《计算机应用》2020,40(11):3300-3305
为了解决全卷积孪生视觉跟踪网络(SiamFC)出现相似语义信息干扰物使得跟踪目标发生漂移,导致跟踪失败的问题,设计出一种基于多层特征增强的实时视觉跟踪网络(MFESiam),分别去增强高层和浅层的特征表示能力,从而提升算法的鲁棒性。首先,对于浅层特征,利用一个轻量并且有效的特征融合策略,通过一种数据增强技术模拟一些在复杂场景中的变化,例如遮挡、相似物干扰、快速运动等来增强浅层特征的纹理特性;其次,对于高层特征,提出一个像素感知的全局上下文注意力机制模块(PCAM)来提高目标的长时定位能力;最后,在三个具有挑战性的跟踪基准库OTB2015、GOT-10K和2018年视觉目标跟踪库(VOT2018)上进行大量实验。实验结果表明,所提算法在OTB2015和GOT-10K上的成功率指标比基准SiamFC分别高出6.3个百分点和4.1个百分点,并且以每秒45帧的速度运行达到实时跟踪。在VOT2018实时挑战上,所提算法的平均期望重叠率指标超过2018年的冠军,即高性能的候选区域孪生视觉跟踪器(SiamRPN),验证了所提算法的有效性。  相似文献   

14.
费大胜  宋慧慧  张开华 《计算机应用》2005,40(11):3300-3305
为了解决全卷积孪生视觉跟踪网络(SiamFC)出现相似语义信息干扰物使得跟踪目标发生漂移,导致跟踪失败的问题,设计出一种基于多层特征增强的实时视觉跟踪网络(MFESiam),分别去增强高层和浅层的特征表示能力,从而提升算法的鲁棒性。首先,对于浅层特征,利用一个轻量并且有效的特征融合策略,通过一种数据增强技术模拟一些在复杂场景中的变化,例如遮挡、相似物干扰、快速运动等来增强浅层特征的纹理特性;其次,对于高层特征,提出一个像素感知的全局上下文注意力机制模块(PCAM)来提高目标的长时定位能力;最后,在三个具有挑战性的跟踪基准库OTB2015、GOT-10K和2018年视觉目标跟踪库(VOT2018)上进行大量实验。实验结果表明,所提算法在OTB2015和GOT-10K上的成功率指标比基准SiamFC分别高出6.3个百分点和4.1个百分点,并且以每秒45帧的速度运行达到实时跟踪。在VOT2018实时挑战上,所提算法的平均期望重叠率指标超过2018年的冠军,即高性能的候选区域孪生视觉跟踪器(SiamRPN),验证了所提算法的有效性。  相似文献   

15.
通常在目标跟踪任务中需要跟踪的目标物体具有任意性,同时目标周围可能有相似的干扰物体,这常常导致预训练网络提取的目标特征并不完全适用于当前需要跟踪的目标物体.针对以上问题,在Siamese孪生网络目标跟踪框架下,提出一种新型的基于梯度导向的通道选择目标跟踪算法.首先从预训练网络提取待跟踪目标特征,利用提出的开关-惩罚损失...  相似文献   

16.
熊昌镇  李言 《计算机应用》2020,40(8):2214-2218
为提升快速在线目标跟踪与分割算法的跟踪精度,提出了一种动态的加权孪生网络跟踪算法。首先,对初始帧提取的模板特征与每帧提取的模板特征进行学习融合,提高跟踪器的泛化能力;其次,在掩膜分支产生目标掩膜的过程中用加权的方式融合特征,减少冗余特征带来的干扰,提高跟踪的精度。在数据集VOT2016和VOT2018上进行测试,所提算法的预期平均重叠率分别为0.450和0.390,精确性分别为0.649和0.618,鲁棒性分别为0.205和0.267,均高于基准算法,跟踪速度为34帧/s,达到了实时跟踪的要求。所提算法有效地提高了跟踪的准确性,能在复杂的跟踪环境下较好地完成跟踪任务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号