首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
高光谱图像的无损压缩研究进展   总被引:12,自引:0,他引:12  
随着成像光谱仪的普及应用,遥感图像的空间分辨率、谱间分辨率、时间分辨率越来越高,使得成像光谱数据量迅速增长,对海量数据进行有效的压缩成了遥感技术发展中迫切需要解决的一个问题.由于有损压缩可能会丢掉对进一步处理非常有用的信息,通常采用无损压缩方法.本文首先介绍了高光谱图像的特点和无损压缩的基本原理,然后综述了高光谱图像无损压缩的研究进展,最后展望了研究前景.  相似文献   

2.
多源遥感图像配准技术综述   总被引:2,自引:0,他引:2       下载免费PDF全文
从成像光谱特性、成像分辨率和成像模式等方面对可见光、红外、高光谱和合成孔径雷达传感器的成像特点进行分析,根据一致性特征描述方法对多源遥感图像配准算法进行分类,指出多源遥感图像具有成像特性变化大、相关度小、匹配特征的空间分布不均匀等特点,其配准技术的关键在于提取不变的图像特征以及得到有效的匹配特征。  相似文献   

3.
不同于传统图像(如灰度图像、RGB图像等)专注于保存目标场景的空间信息,高光谱图像蕴含丰富的空—谱信息,不仅可以保存目标的空间信息,还可以保存具有高可辨性的光谱信息。因此高光谱图像广泛应用于多种计算机视觉和遥感图像任务中,如目标检测、场景分类和目标追踪等。然而,在高光谱图像获取以及重建过程中仍然存在许多问题与瓶颈。如传统高光谱成像仪器在成像过程中通常会引入噪声,且获得的图像往往具有较低的空间分辨率,极大地影响了高光谱图像的质量,对后续数据分析任务造成了极大的困难。近年来,高光谱图像超分辨率重建技术研究得到了极大的发展,现有超分辨率重建方法可以大致分为两类,一类为空间超分辨率重建方法,可以通过直接提升高光谱图像的空间分辨率来获得高质量高光谱图像;另一类为光谱超分辨率重建方法,可以通过提升高空间分辨率图像的光谱分辨率来生成高质量高光谱图像。本文从高光谱图像超分辨率重建领域的新设计、新方法和应用场景出发,通过综合国内外前沿文献来梳理该领域的主要发展,重点论述高光谱图像超分辨率重建领域的发展现状、前沿动态、热点问题及趋势。  相似文献   

4.
空间调制型全偏振计算成像同时获得可见光和红外通道图像,但是受探测器限制,2个通道的图像空间分辨率不一致,给后端的图像融合及目标探测过程带来不便.为此,提出基于场景特征迁移学习的空间调制型计算成像超分辨率方法.首先在分析空间调制计算成像的相同场景异源图像特点基础上,构建场景特征迁移模型;然后建立改进场景迁移卷积神经网络结构并选择修正线性激活函数,同时增加空间分辨率一致性约束;再设计最优光谱迁移响应学习策略,并作为前端输入加到超分辨率网络;最后将光谱迁移响应优化与全偏振超分辨率重建的参数联合学习,获得高分辨率偏振图像.利用实际成像系统的仿真数据及系统数据进行2倍和3倍超分辨率实验,从主观视觉效果、客观量化评价指标和偏振参量解析结果3个方面对多个指标进行评价.结果表明,文中方法在视觉效果上能够保持目标轮廓并抑制噪声干扰,在16个客观指标对比数据上取得了10个优于、3个相同和3个低于的结果,验证了该方法的有效性,为成像系统定标校正提供数据支持.  相似文献   

5.
以声光可调谐滤波器(AOTF)为分光元件,集成了一种凝视型AOTF高光谱成像系统.系统硬件由AOTF及其控制器、CCD近红外相机、镜头、计算机组成,系统软件采用VC++2010语言,调用机器视觉算法包HALCON10.0的库文件和AOTF的库文件,实现对AOTF控制器和相机操作的控制及高光谱图像预处理.所集成的AOTF的凝视型光谱成像系统能连续采集被测物体的高光谱图像,光谱段为550~1 000 nm,光谱分辨率为2~6 nm,图像分辨率为1392像素×1 040像素.  相似文献   

6.
高斯过程及其在高光谱图像分类中的应用   总被引:1,自引:0,他引:1  
高光谱遥感图像分类是高光谱成像信息处理的研究热点,高光谱成像的内在特点对于分类器设计具有直接影响.高斯过程是近年来发展迅速的一种新的机器学习方法,具备容易实现、超参数可自适应获取以及预测输出具有概率意义等优点,比较适合于处理图像分类问题.首先对高斯过程的基本概念及其主要的分类算法进行了简要介绍,然后在对高光谱图像分类的特点和高光谱图像分类的研究现状的分析基础上,讨论了基于高斯过程的高光谱图像分类的基本思想,提出了基于空间约束的高斯过程分类和基于半监督高斯过程分类等适合高光谱图像分类的新方法.最后对基于高斯过程的高光谱图像分类研究的发展趋势进行了展望.  相似文献   

7.
徐其志  高峰 《计算机科学》2014,41(10):19-22
随着遥感技术的快速发展,越来越多的成像卫星可采集同时相的全色和多光谱图像。通常,多光谱图像的分辨率低于全色图像,但实际应用中人们更迫切需要提升多光谱图像的分辨率。当前,研究人员已提出了大量的图像融合方法来解决这个问题,但依然存在光谱失真、细节模糊等问题。此外,真实遥感图像的尺寸较大,现有融合方法难以满足实际应用的高时效要求。为此,提出了基于比值变换的全色与多光谱图像高保真融合方法。根据全色与多光谱图像分辨率之比,该方法对全色图像先下采样,再上采样,生成全色降质图像;同时,对多光谱图像进行上采样,得到多光谱降质图像;然后,计算全色与其降质图像的比值,将多光谱降质图像乘以该比值生成融合图像。实验表明,本方法的保真效果好,性能优于对比方法。  相似文献   

8.
多光谱遥感图像与高分辨率全色图像融合研究   总被引:1,自引:0,他引:1  
介绍了遥感图像融合的一般过程和特点,研究了像素级融合的常用算法,归纳了融合图像的基本步骤,采用四种融合方法对高空间分辨率的全色图像与高光谱分辨率的多光谱图像进行像素级融合实验,发现基于小波变换的图像融合提供更多细节信息,Brovey变换法融合全色图像与多光谱图像目视效果最好,速度最快。  相似文献   

9.
王建宇 《遥感信息》1990,(1):2-4,21
一、引言本文通过分析成像光谱仪图像数据的特征,提出减少和压缩成像光谱仪数据率的可能性和实施方案,并研制了一套成像光谱仪图像实时处理系统。成像光谱仪以它高光谱分辨率的强大优势而将成为90年代新型的遥感仪器。它把传统的二维空间遥感技术与光谱仪的技术有机地相结合发展成“图谱合一”的三维遥感技术。为了探测到地物光谱的吸收和反射特征,目前的成像  相似文献   

10.
随着遥感对地观测技术的飞速发展, 成像光谱图像呈现指数增长, 特别是人工智能技术和高性能计算的加速崛起, 进一步推动了成像光谱大数据时代的到来. 因此, 如何高效地组织和管理海量的成像光谱图像数据成为一个亟待解决的实际应用问题. 然而, 网络时代的开放性与共享性, 使得网络信息安全问题日益突出, 特别是含有重要信息的成像光谱图像应具有严格的保密性, 确保检索过程中不发生失泄密事件. 本文总结了近年来成像光谱图像安全检索的主要技术, 包括特征提取与表示、特征降维、加密域安全检索技术和性能评价准则, 最后对成像光谱图像安全检索技术进行了总结与展望.  相似文献   

11.
多光谱影像星上压缩方法探讨   总被引:1,自引:0,他引:1  
在星地数据传输信道带宽有限的情况下,为提高星载影像数据的单轨下传量,科研人员已开展卫星影像数据星上压缩方法的研究工作。区别于全色影像的压缩,多光谱或高光谱影像的星上压缩不仅需要考虑诸如JPEG等基于空间相关性的压缩算法,还需要结合如PCA等基于谱间相关性的方法,从而在数据压缩过程中保证空间和光谱两方面的信息保真度。因此,本文将回顾目前基于空间变换和谱间变换,以及基于内容的遥感影像压缩方法。进一步针对常规性监测和灾害应急监测两种需求,在考虑星上数据预处理和智能处理的基础上,提出了一种多光谱或高光谱影像星上压缩的理论框架及其对应的地面数据处理流程。最后,本文指出了多光谱或高光谱影像星上压缩研究工作中需进一步探讨的若干技术问题。  相似文献   

12.
在超光谱影像压缩领域,目前还没有一个公认的标准或已成熟的压缩方法,分布式信源编码(DSC)是一种新出现的应用机制。通过论述超光谱影像压缩中DSC的概念和意义,回顾DSC的理论基础,系统地研讨了超光谱影像压缩中DSC的主要方法,最后给出了DSC应用于超光谱影像压缩的应用前景、发展现状和技术难点。  相似文献   

13.
高光谱图像是由成像光谱仪在不同光谱波段获得的序列图像,在二维遥感图像的基础上又增加了光谱维的信息。与传统的遥感数据源相比,高光谱数据同时具有空间冗余和谱间冗余的特点。该文在分形理论的基础上,利用分形压缩编码的高压缩比特性,并针对高光谱图像的特点,将分形理论和高光谱图像相结合,设计了一个三维分形压缩编码算法,在去除图像空间相关性的同时,去除了波段图像之间的相关性。  相似文献   

14.
高光谱图像具有较高谱分辨率的优越性是以其较大的数据量及较高的数据维为代价的,因此有必要研究有效的高光谱图像压缩方法。探讨一种基于谱间预测的高光谱图像压缩方案。考虑到高光谱图像谱间相关性随分辨率的提高而增强,推导出由多个波段对当前波段进行线性预测的预测器系数求解算法,提出了一种参考波段优化选取方法。实验结果表明,该方法能获得较低的最小均方误差,运算速度快,具有实用价值。  相似文献   

15.
高光谱图像压缩技术是遥感数据存储和传输中的一个迫切需要解决的问题。高光谱图像的特点是存在着两类冗余:空间冗余和谱间冗余。高光谱图像的压缩要同时利用图像的空间冗余和谱间冗余。基于重组的DPCM和位平面编码的压缩方法,是通过重组的DPCM,去除帧间相关性,消除超光谱图像帧间的冗余;然后对残差图像的压缩采用基于小波变换和位平面编码技术,去除空间冗余。实验取得了令人满意的效果,证明了该算法的有效性和实用性。  相似文献   

16.
针对高光谱影像光谱维的数据量大、传统影像压缩方法不易于保存光谱内信息的特点,对矢量量化数据压缩方法中码书设计和码字搜索两个关键技术进行详细地研究,提出针对高光谱影像压缩的改进方法,并在此基础上实现了对高光谱影像的矢量量化压缩算法。最后通过对不同波段组合的AVIRIS的高光谱数据的实验,从压缩后的压缩率、速率和失真率等方面进行观察和对比,证明矢量量化压缩算法对高光谱影像具有显著的压缩效果。  相似文献   

17.
一种基于网格编码量化的高光谱图像无损压缩方法   总被引:3,自引:1,他引:3       下载免费PDF全文
由于遥感图像的数据量非常庞大,给有限的存储空间和传输带宽带来很大的压力,同时,由于高光谱图像获取代价昂贵,具有广泛的应用领域,且压缩时一般不能丢失任何信息,即要求无损压缩,因此没有有效的压缩方法,高光谱图像的普及应用将受到极大的限制.网格编码量化(TCQ)借鉴了网格编码调制(TCM)中信号集合扩展、信号集合划分和网格状态转移的思想,其虽具有良好的均方误差(MSE)性能,而且计算复杂度适中,但目前TCQ主要被应用于图像的有损压缩,为了对高光谱图像进行有效的无损压缩,通过将TCQ引入高光谱图像的无损压缩,并根据高光谱图像的特点,提出了一种基于小波变换和TCQ的高光谱图像无损压缩方法.实验结果表明,与JPEG2000和JPEG-LS中无损压缩算法相比,该算法对高光谱图像具有更好的压缩性能.  相似文献   

18.
高光谱图像作为一种三维图像,其海量数据给存储和传输带来极大困难,必须对其进行有效压缩。根据高光谱图像的特点,本文提出了一种基于三维整数小波与自适应预测的无损压缩算法。首先利用三维整数小波变换充分消除高光谱图像的谱间冗余和空间冗余,自适应预测编码可以进一步消除变换后低频子带之间的冗余,从而进一步提高压缩性能;最后利用JPEG-LS标准和SPIHT算法分别对数据进行无损压缩。通过改变小波基,也可实现有损压缩。实验结果表明,该算法可以取得较好的无损和有损压缩效果。  相似文献   

19.
在高光谱图像分析领域中,波段选择是一种能有效减少高光谱图像维度的方法。K类仿射传播算法是一种高效的聚类算法,已成功地应用于人脸识别和数据分析等领域,但在高光谱图像分析领域还少有成功的应用。提出将K-AP算法应用于高光谱图像波段选择,对高光谱图像进行有效的数据压缩。针对K-AP算法的特点,基于Kullback-Leibler散度定义了新的相似度矩阵,对波段进行度量,再使用K-AP算法进行聚类,选择最有代表性的波段。实验结果表明,与常用的波段选择方法相比,所提出的方法有更好的表现。  相似文献   

20.
主成分分析(PCA)常常结合JPEG2000压缩标准用来对高光谱图像进行压缩。然而,由PCA得到的主成分仅利用了二阶统计信息。对于高光谱图像应用来说,只采用二阶统计信息是远远不够的,如异常像素的处理常常需要用到更高阶的统计信息。研究了一种混合PCA/ICA与JPEG2000相结合的高光谱图像压缩算法。首先,对原始高光谱图像进行PCA变换,提取出前m个主成分对应的特征向量矩阵WPCA;然后,对其余的特征向量进行ICA变换,得到n个特征向量矩阵WICA;最后,将得到的混合投影矩阵、原始高光谱图像及其均值向量共同嵌入JPEG2000比特流,从而完成对高光谱图像的压缩。在不同码率的情况下,通过空间相关系数(ρ)、信噪比(SNR)、光谱角填图(SAM)等技术指标对混合PCA/ICA+JPEG2000算法的压缩性能进行评估。实验结果表明,混合PCA/ICA+JPEG2000算法不但能有效去除高光谱图像的谱间相关性,而且能够有效提高光谱保真度,保护异常像素信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号