首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multivariable MRAC scheme with application to a nonlinear aircraft model   总被引:1,自引:0,他引:1  
This paper revisits the multivariable model reference adaptive control (MRAC) problem, by studying adaptive state feedback control for output tracking of multi-input multi-output (MIMO) systems. With such a control scheme, the plant-model matching conditions are much less restrictive than those for state tracking, while the controller has a simpler structure than that of an output feedback design. Such a control scheme is useful when the plant-model matching conditions for state tracking cannot be satisfied. A stable adaptive control scheme is developed based on LDS decomposition of the high-frequency gain matrix, which ensures closed-loop stability and asymptotic output tracking. A simulation study of a linearized lateral-directional dynamics model of a realistic nonlinear aircraft system model is conducted to demonstrate the scheme. This linear design based MRAC scheme is subsequently applied to a nonlinear aircraft system, and the results indicate that this linearization-based adaptive scheme can provide acceptable system performance for the nonlinear systems in a neighborhood of an operating point.  相似文献   

2.
In this paper, a multivariable adaptive control approach is proposed for a class of unknown nonlinear multivariable discrete-time dynamical systems. By introducing a k-difference operator, the nonlinear terms of the system are not required to be globally bounded. The proposed adaptive control scheme is composed of a linear adaptive controller, a neural-network-based nonlinear adaptive controller and a switching mechanism. The linear controller can assure boundedness of the input and output signals, and the neural network nonlinear controller can improve performance of the system. By using the switching scheme between the linear and nonlinear controllers, it is demonstrated that improved performance and stability can be achieved simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.  相似文献   

3.
A new robust adaptive control scheme is developed for nonlinearly parametrized multivariable systems in the presence of parameter uncertainties and unmatched disturbances. The developed control scheme employs a new integrated framework of a functional bounding technique for handling nonlinearly parametrized system dynamics, an adaptive parameter estimation algorithm for dealing with parameter uncertainties, a nonlinear feedback controller structure for stabilization of interconnected system states, and a robust adaptive control design for accommodating unmatched disturbances. It is proved that such a new robust adaptive control scheme is capable of ensuring the global boundedness and mean convergence of all closed‐loop system signals. A complete simulation study on an air vehicle system with nonlinear parametrization in the presence of an unmatched wind disturbance is conducted, and its results verify the effectiveness of the proposed robust adaptive control scheme.  相似文献   

4.
A feedback linearization‐based adaptive control scheme is developed for multivariable nonlinear systems with redundant actuators subject to uncertain failures. Such an adaptive controller contains a direct adaptive actuator failure compensator to compensate the uncertain actuator failure, a nonlinear feedback to linearize the nonlinear dynamics, and a linear feedback to stabilize the linearized system. The key new design feature is the estimation of both the failure patterns and the failure values, for direct adaptive actuator failure compensation, newly developed for multivariable feedback linearizable nonlinear systems. With direct control signal adaptation, the adaptive failure compensation design ensures closed‐loop stability and asymptotic output tracking in the presence of actuator failure uncertainties. Simulation results from an application to attitude control of a near‐space vehicle dynamic model are presented to verify the desired system performance with adaptive actuator failure compensation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
本文提出了一种新的限制输出个数减少随机多变量自适应控制中辨识参数的方法,并给出了减少辨识参数的极点配置自适应算法。虽然采用n个输入1个输出的减少辨识参数的模型来设计控制器,但所提出的控制器能够保证被控系统的几个输出跟踪参考输入信号,仿真结果表明,所提出的方法是成功的。  相似文献   

6.
未知参数多变量线性系统自适应模糊广义预测控制   总被引:2,自引:0,他引:2  
对未知参数多变量线性系统提出了自适应模糊广义预测控制方法.该方法直接用模糊逻辑系统组成的向量设计广义预测控制器,并基于广义误差向量估计值对控制器中的未知向量和广义误差估计值中的未知矩阵进行白适应调整.该方法不但能保证闭环系统所有信号有界,而且可使广义误差向量收敛到原点的一个邻域内.  相似文献   

7.
For a class of systems with unmodeled dynamics, robust adaptive stabilization problem is considered in this paper. Firstly, by a series of coordinate changes, the original system is re-parameterized. Then, by introducing a reduced-order observer, an error system is obtained. Based on the system, a reduced-order adaptive backstepping controller design scheme is given. It is proved that all the signals in the adaptive control system are globally uniformly bounded, and the regulation error converges to zero asymptotically. Due to the order deduction of the controller, the design scheme in this paper has more practical values. A simulation example further demonstrates the efficiency of the control scheme.  相似文献   

8.
A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.  相似文献   

9.
A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.  相似文献   

10.
This paper describes the design and implementation of an indirect adaptive controller that uses neural networks both for identification and control of an experimental pilot distillation column containing a mixture of ethanol and water. The MATLAB platform is applied both for the neural identification and control of the distillation plant using the Levenberg–Marquardt approach, enabling also optimal input/output net configuration. The neural controller performance has been analyzed and illustrated via experimental tests on the pilot distillation column monitored under the LabVIEW platform. Both platforms have been linked together by constituting an integrated process control interface. The obtained experimental results demonstrate the effectiveness of the neural indirect adaptive control scheme as compared to proportional–integrative–derivative, when real-time multivariable control is demanded, even in presence of disturbances.  相似文献   

11.
This paper presents an adaptive neural control design for nonlinear pure-feedback systems with an input time-delay. Novel state variables and the corresponding transform are introduced, such that the state-feedback control of a pure-feedback system can be viewed as the output-feedback control of a canonical system. An adaptive predictor incorporated with a high-order neural network (HONN) observer is proposed to obtain the future system states predictions, which are used in the control design to circumvent the input delay and nonlinearities. The proposed predictor, observer and controller are all online implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed. The conventional backstepping design and analysis for pure-feedback systems are avoided, which renders the developed scheme simpler in its synthesis and application. Practical guidelines on the control implementation and the parameter design are provided. Simulation on a continuous stirred tank reactor (CSTR) and practical experiments on a three-tank liquid level process control system are included to verify the reliability and effectiveness.  相似文献   

12.
《Automatica》2014,50(11):2737-2764
Adaptive control is a control methodology capable of dealing with uncertain systems to ensure desired control performance. This paper provides an overview of some fundamental theoretical aspects and technical issues of multivariable adaptive control, and a thorough presentation of various adaptive control schemes for multi-input–multi-output systems, literature reviews on adaptive control foundations and multivariable adaptive control methods, and related technical problems. It covers some basic concepts and issues such as certainty equivalence, stability, tracking, robustness, and parameter convergence. It discusses some of the most important topics of adaptive control: plant uncertainty parametrization, stable controller adaptation, and design conditions for different adaptive control schemes. The paper also presents a detailed study of well-developed multivariable model reference adaptive control theory and design techniques. It provides an introduction to multivariable adaptive pole placement and adaptive nonlinear control, and it concludes by identifying some open research problems.  相似文献   

13.
This paper proposes another adaptive control scheme for nonlinear systems using a Takagi-Sugeno fuzzy model. Takagi-Sugeno fuzzy models have been widely used to identify the structures and parameters of unknown or partially known plants, and to control nonlinear systems. This scheme shows a good approximation capability by the fuzzy blending of local dynamics. Since a Takagi-Sugeno fuzzy model is a nonlinear system in nature, and its parameters are not linearly parameterized, it is difficult to design an adaptive controller using conventional design methods for adaptive controllers which are derived from linearly parameterized systems. In this paper, the functional form of the local dynamics are assumed to be known, but the corresponding parameters are unknown. This additional information about system nonlinearity makes it possible to design an adaptive controller for a nonlinearly parameterized system. The control law is similar to that of a conventional adaptive control technique, while its parameter-update rule is based on the local search method. A parameter-update law is derived so that the time-derivative of the Lyapunov function is negative in the region of interest. Simulation results have shown that this adaptive controller is capable of a good performance. This work was presented in part at the Fifth International Symposium on Artificial Life and Robotics, Oita, Japan, January 26–28, 2000  相似文献   

14.
针对一类含有未建模动态的关联系统,考虑了降阶的鲁棒分散自适应反推控制问题.首先通过一系列坐标变换,将原系统重新参数化,然后引入降阶观测器,得到一个误差系统.基于该系统,给出了一种降阶自适应反推控制器的设计方案.证明了自适应控制系统的所有信号全局一致有界,调节误差渐近收敛到零.控制器阶次的降低使得本文的设计方案更具应用价值.  相似文献   

15.
基于启发式知识的模糊控制是一种解决非线性系统控制问题的有效方法。然而其设计缺乏系统性,并且系统的稳定性和鲁棒性难以保证。本文利用滑模控制的概念和Lyapunov综合方法提出一种针对一类非线性系统的间接自适应模糊滑模控制(IAFSMC)方法。仿真研究表明即使在缺少系统先验知识和不确定性干扰的情况下,系统性能也十分理想。  相似文献   

16.
电液伺服系统的多滑模鲁棒自适应控制   总被引:7,自引:0,他引:7  
针对一类参数与外负载非匹配不确定的非线性高阶系统,提出了一种基于逐步递推方法的多滑模鲁棒自适应控制策略.应用逐步递推的多滑模控制方法简化了高阶系统的控制问题,同时在自适应控制中加入鲁棒控制的方法,以消除不确定性对控制性能的影响.首先利用逐步递推方法与状态反馈精确线性化理论,得出确定系统的多滑模控制器设计方法;然后基于Lyapunov稳定性分析方法,给出不确定系统的参数自适应律,及鲁棒自适应控制器的设计方法.本文把该控制策略应用到电液伺服系统的位置跟踪控制中,仿真结果显示,该控制方法具有较强的鲁棒性及良好的跟踪效果.  相似文献   

17.
In this paper, an adaptive control scheme, based on fuzzy logic systems, for pH control is addressed. For implementation of the proposed scheme no composition measurement is required. Stability of the closed-loop system is established and it is shown that the solution of the closed-loop system is uniformly ultimately bounded and under a certain condition, asymptotical stability is achieved. Effectiveness of the proposed controller is tested through simulation and experimental studies. Results indicate that the proposed controller has good performances in set-point tracking and load rejection and much better than that of a tuned PI controller.  相似文献   

18.
多变量模型的复杂结构、强耦合性、被控对象参数的未知、慢时变等问题要求控制器必须具有良好的自适应性,针对以上问题提出了一种基于改进的广义最小方差闭环自适应解耦控制器实现更好的自适应,其由参数可调的控制器和自适应控制律组成,此控制器通过将闭环系统方程的传递函数矩阵等于期望的对角矩阵来实现解耦,同时改进的辨识算法可进行在线辨识控制器的参数实现同步自适应解耦。通过以CARMA为多变量控制模型,采用该方法进行仿真有效的解决了多变量之间的耦合性。结果表明该方法能够适应相应的变化,跟踪性能较好,且具备良好的解耦能力,进而保证了闭环系统的稳定性,从而验证了此方法能够效提高控制系统的稳定性和鲁棒性。  相似文献   

19.
An adaptive disturbance rejection control scheme is developed for uncertain multi-input multi-output nonlinear systems in the presence of unmatched input disturbances. The nominal output rejection scheme is first developed, for which the relative degree characterisation of the control and disturbance system models from multivariable nonlinear systems is specified as a key design condition for this disturbance output rejection design. The adaptive disturbance rejection control design is then completed by deriving an error model in terms of parameter errors and tracking error, and constructing adaptive parameter-updated laws and adaptive parameter projection algorithms. All closed-loop signals are guaranteed to be bounded and the plant output tracks a given reference output asymptotically despite the uncertainties of system and disturbance parameters. The developed adaptive disturbance rejection scheme is applied to turbulence compensation for aircraft fight control. Simulation results from a benchmark aircraft model verify the desired system performance.  相似文献   

20.
A two level adaptive controller for the control of a high speed robot is proposed. Dynamic interaction effects of the robot system are eliminated by applying a centralized adaptive multivariable decoupler. Decentralized adaptive PID controllers stabilize and eliminate the static positioning errors of the robot system. No prior knowledge of robot dynamics is required for this scheme. Output transients caused by sensitivity to the system parameter variations is reducible by adjusting the gain constants of the decoupler. Computation load for the implementation of the decoupler is minimal due to its direct nature, The effectiveness of the scheme is demonstrated by simulation results in high speed repetitive motion trackings and load change conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号