首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于观测器的一类非线性系统的自适应模糊控制   总被引:1,自引:1,他引:0  
针对一类有界的不确定非线性系统设计了模糊观测器和自适应控制器.该方法不需要系统状态完全可测的条件,而是通过模糊观测器估计系统的状态变量并且能保证观测误差是一致最终有界的.该自适应控制器取得了良好的控制效果并且保证了跟踪误差的一致最终有界性.仿真结果表明了本文所提出的方法有效性.  相似文献   

2.
In this paper, a fuzzy adaptive backstepping design procedure is proposed for a class of nonlinear systems with three types of uncertainties: (i) nonlinear uncertainties; (ii) unmodeled dynamics and (iii) dynamic disturbances. The fuzzy logic systems are used to approximate the nonlinear uncertainties, nonlinear damping terms are used to counteract the dynamic disturbances and fuzzy approximation errors, and a dynamic signal is introduced to dominate the unmodeled dynamics. The derived fuzzy adaptive control approach guarantees the global boundedness property for all the signals and states, and at the same time, steers the output to a small neighborhood of the origin. Simulation studies are included to illustrate the effectiveness of the proposed approach.  相似文献   

3.
In this paper, a novel robust adaptive fuzzy variable structure control (RAFVSC) scheme is proposed for a class of uncertain nonlinear systems. The uncertain nonlinear system and gain functions originating from modeling errors and external disturbances are all unstructured (or non-repeatable), state-dependent and completely unknown. The Takagi–Sugeno type fuzzy logic systems are used to approximate uncertain functions in the systems and the RAFVSC is designed by use of the input-to-state stability (ISS) approach and small gain theorem. In the algorithm, there are three advantages which are that the asymptotic stability of adaptive control in the presence of unstructured uncertainties can be guaranteed, the possible controller singularity problem in some of existing adaptive control schemes using feedback linearization techniques can be removed and the adaptive mechanism with minimal learning parameterizations can be achieved. The performance and effectiveness of the proposed methods are discussed and illustrated with two simulation examples.  相似文献   

4.
5.
An adaptive fuzzy robust tracking control (AFRTC) algorithm is proposed for a class of nonlinear systems with the uncertain system function and uncertain gain function, which are all the unstructured (or nonrepeatable) state-dependent unknown nonlinear functions arising from modeling errors and external disturbances. The Takagi-Sugeno type fuzzy logic systems are used to approximate unknown uncertain functions and the AFRTC algorithm is designed by use of the input-to-state stability approach and small gain theorem. The algorithm is highlighted by three advantages: 1) the uniform ultimate boundedness of the closed-loop adaptive systems in the presence of nonrepeatable uncertainties can be guaranteed; 2) the possible controller singularity problem in some of the existing adaptive control schemes met with feedback linearization techniques can be removed; and 3) the adaptive mechanism with minimal learning parameterizations can be obtained. The performance and limitations of the proposed method are discussed. The uses of the AFRTC for the tracking control design of a pole-balancing robot system and a ship autopilot system to maintain the ship on a predetermined heading are demonstrated through two numerical examples. Simulation results show the effectiveness of the control scheme.  相似文献   

6.
一类未知非线性离散系统的直接自适应模糊预测控制   总被引:8,自引:1,他引:8  
将自适应模糊逻辑系统引入预测控制,对一类未知非线性离散系统提出了直接自适应 模糊预测控制方法.首先对被控对象提出了线性时变子模型加非线性子模型的预测模型,然后直 接利用模糊逻辑系统设计预测控制器,并基于广义误差估计值对控制器参数和广义误差估计值中 的未知向量进行自适应调整.文中证明了此方法可使广义误差估计值收敛到原点的小邻域内.  相似文献   

7.
This paper investigates observer-based adaptive fuzzy control for a class of delayed nonlinear systems in pure-feedback form. We first proposed a linear observer to get the estimation of the system's state. And then utilise fuzzy logic systems to model those nonlinearities. Further, adaptive fuzzy approach and backstepping technique are combined to develop the desired controller via Lyapunov analysis. The suggested adaptive fuzzy control scheme ensures that all the signals of the resulting nonlinear system converge to a small neighbourhood of the origin. Then a real simulation is used to illustrated the effectiveness of our results.  相似文献   

8.
研究一类存在模型不确定性和外部扰动的互联机器人系统的控制问题.控制器由一般线性控制器,线性自适应控制器和非线性自适应控制器综合构成.通过Lyapunov理论证明设计的鲁棒分散自适应控制器能够有效地克服不确定性对系统的影响,实现闭环系统的渐近轨迹跟踪控制.最后给出一个仿真例子进一步验证控制器的有效性.  相似文献   

9.
An asymptotic rejection algorithm is proposed for a class of nonlinear systems that have not only additive nonlinear uncertainties but also unknown disturbances. The disturbances are generated from an unknown exosystem, and are assumed to be sinusoidal disturbances with unknown amplitude and frequency. By using the technique of backstepping and adaptive control, a nonlinear state feedback controller is designed. Under the proposed controller, the system's state variables asymptotically converge to zero, and the disturbances are rejected completely. The approach used is an integration of the robust stabilization technique, adaptive technique, and backstepping technique.  相似文献   

10.
基于模糊逼近的一类不确定非线性系统的容错控制   总被引:1,自引:0,他引:1  
针对一类不确定非线性系统,提出了一种模糊容错控制方案.采用模糊T-S模型来逼近非线性系统,由线性矩阵不等式设计模糊模型的控制律.构建了模糊逻辑系统作为补偿器来抵消对非线性系统的建模误差和因故障引起的不确定性,并证明了闭环系统能够满足期望的跟踪性能.仿真实例表明了所提出容错控制方案的有效性.  相似文献   

11.
In this paper, a stable adaptive fuzzy sliding mode based tracking control is developed for a class of nonlinear MIMO systems that are represented by input output models involving system uncertainties and external disturbances. The main contribution of the proposed method is that the structure of the controller system is partially unknown and does not require the bounds of uncertainties and disturbance to be known. First, a fuzzy logic system is designed to estimate the unknown function. Secondly, in order to eliminate the chattering phenomenon brought by the conventional variable structure control, the signum function is replaced by an adaptive Proportional Derivative (PD) term in the proposed approach. All parameter adaptive laws and robustifying control terms are derived based on Lyapunov stability analysis, so that convergence to zero of tracking errors and boudedness of all signals in the closed-loop system can be guaranteed. Finally, a mass-spring-damper system is simulated to demonstrate the validity and the effectiveness of the proposed controller.  相似文献   

12.
针对一类含有参数不确定性和未知非线性扰动的系统,本文提出一种基于扰动补偿的无微分模型参考自适应控制方法,实现系统输出对参考模型输出信号的高精度跟踪.首先,利用被控对象模型信息设计扰动估计器,对系统非线性扰动进行在线估计;其次,基于非线性扰动估计值设计参考模型和无微分参数更新律,构建无微分模型参考自适应控制器,建立基于扰动补偿和状态反馈的自适应控制律,以消除参数不确定性和非线性扰动对系统输出的影响,保证系统输出对参考模型输出的准确跟踪;然后,给出闭环系统误差信号收敛条件和控制器参数整定方法;最后,通过数值仿真验证所提方法的有效性和优越性.  相似文献   

13.
In this paper, an adaptive fuzzy output feedback control approach based on backstepping design is proposed for a class of SISO strict feedback nonlinear systems with unmeasured states, nonlinear uncertainties, unmodeled dynamics, and dynamical disturbances. Fuzzy logic systems are employed to approximate the nonlinear uncertainties, and an adaptive fuzzy state observer is designed for the states estimation. By combining backstepping technique with the fuzzy adaptive control approach, a stable adaptive fuzzy...  相似文献   

14.
In this paper, a stable fuzzy neural tracking control of a class of unknown nonlinear systems based on the fuzzy hierarchy approach is proposed. The adaptive fuzzy neural controller is constructed from the fuzzy neural network with a set of fuzzy rules. The corresponding network parameters are adjusted online according to the control law and update law for the purpose of controlling the plant to track a given trajectory. A stability analysis of the unknown nonlinear system is discussed based on the Lyapunov principle. In order to improve the convergence of the nonlinear dynamical systems, a fuzzy hierarchy error approach (FHEA) algorithm is incorporated into the adaptive update and control scheme. The simulation results for an unstable nonlinear plant demonstrate the control effectiveness of the proposed adaptive fuzzy neural controller and are consistent with the theoretical analysis.  相似文献   

15.
方炜  姜长生 《控制与决策》2008,23(12):1373-1377
考虑一类非线性不确定系统的变论域模糊预测控制问题.根据跟踪误差在线调整伸缩因子,使变论域模糊系统一致逼近被控对象中的未知干扰和不确定因素.通过引入鲁棒自适应控制器,消除了模糊建模误差,提高了系统的动态性能.基于泰勒展开的非线性预测控制律,避免了繁重的计算负担.基于Lyapunov理论,给出了伸缩因子的σ调整律,并证明了闭环系统一致最终有界.最后,将该算法用于空天飞行器(ASV)姿态控制系统的设计,仿真结果表明了该算法的有效性.  相似文献   

16.
针对一类系统不确定及受外界干扰的分数阶混沌系统,本文首先将分数阶微积分应用到滑模控制中,构造了一个具有分数阶积分项的滑模面.针对系统不确定及外界干扰项,基于分数阶Lyapunov稳定性理论与自适应控制方法,设计了一种滑模控制器以及分数阶次的参数自适应律,实现了两不确定分数阶混沌系统的同步控制,并辨识出相应误差系统中不确定项及外界干扰项的边界.在分数阶系统稳定性分析中使用的分数阶Lyapunov稳定性理论及相关函数都可以很好地运用到其它分数阶系统同步控制方法中.最后数值仿真验证了所提控制方法的可行性与有效性.  相似文献   

17.
It is proposed here to use a robust tracking design based on adaptive fuzzy control technique to control a class of multi-input-multi-output (MIMO) nonlinear systems with time delayed uncertainty in which each uncertainty is assumed to be bounded by an unknown gain. This technique will overcome modeling inaccuracies, such as drag and friction losses, effect of time delayed uncertainty, as well as parameter uncertainties. The proposed control law is based on indirect adaptive fuzzy control. A fuzzy model is used to approximate the dynamics of the nonlinear MIMO system; then, two on-line estimation schemes are developed to overcome the nonlinearities and identify the gains of the delayed state uncertainties, simultaneously. The advantage of employing an adaptive fuzzy system is the use of linear analytical results instead of estimating nonlinear system functions with an online update law. The adaptive fuzzy scheme uses a Variable Structure (VS) scheme to resolve the system uncertainties, time delayed uncertainty and the external disturbances such that H tracking performance is achieved. The control laws are derived based on a Lyapunov criterion and the Riccati-inequality such that all states of the system are uniformly ultimately bounded (UUB). Therefore, the effect can be reduced to any prescribed level to achieve H tracking performance. A two-connected inverted pendulums system on carts and a two-degree-of-freedom mass-spring-damper system are used to validate the performance of the proposed fuzzy technique for the control of MIMO nonlinear systems.  相似文献   

18.
A fuzzy logic controller equipped with a training algorithm is developed such that the H tracking performance should be satisfied for a model-free nonlinear multiple-input multiple-output (MIMO) system, with external disturbances. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions and the tracking error, because of the matching error and external disturbance is attenuated to arbitrary desired level by using H tracking design technique. In this paper, a new direct adaptive interval type-2 fuzzy controller is developed to handle the training data corrupted by noise or rule uncertainties for nonlinear MIMO systems involving external disturbances. Therefore, linguistic fuzzy control rules can be directly incorporated into the controller and combine the H attenuation technique. Simulation results show that the interval type-2 fuzzy logic system can handle unpredicted internal disturbance, data uncertainties, very well, but the adaptive type-1 fuzzy controller must spend more control effort in order to deal with noisy training data. Furthermore, the adaptive interval type-2 fuzzy controller can perform successful control and guarantee the global stability of the resulting closed-loop system and the tracking performance can be achieved.  相似文献   

19.
In this paper, a novel fuzzy Generalized Predictive Control (GPC) is proposed for discrete-time nonlinear systems via Takagi-Sugeno system based Kernel Ridge Regression (TS-KRR). The TS-KRR strategy approximates the unknown nonlinear systems by learning the Takagi-Sugeno (TS) fuzzy parameters from the input-output data. Two main steps are required to construct the TS-KRR: the first step is to use a clustering algorithm such as the clustering based Particle Swarm Optimization (PSO) algorithm that separates the input data into clusters and obtains the antecedent TS fuzzy model parameters. In the second step, the consequent TS fuzzy parameters are obtained using a Kernel ridge regression algorithm. Furthermore, the TS based predictive control is created by integrating the TS-KRR into the Generalized Predictive Controller. Next, an adaptive, online, version of TS-KRR is proposed and integrated with the GPC controller resulting an efficient adaptive fuzzy generalized predictive control methodology that can deal with most of the industrial plants and has the ability to deal with disturbances and variations of the model parameters. In the adaptive TS-KRR algorithm, the antecedent parameters are initialized with a simple K-means algorithm and updated using a simple gradient algorithm. Then, the consequent parameters are obtained using the sliding-window Kernel Recursive Least squares (KRLS) algorithm. Finally, two nonlinear systems: A surge tank and Continuous Stirred Tank Reactor (CSTR) systems were used to investigate the performance of the new adaptive TS-KRR GPC controller. Furthermore, the results obtained by the adaptive TS-KRR GPC controller were compared with two other controllers. The numerical results demonstrate the reliability of the proposed adaptive TS-KRR GPC method for discrete-time nonlinear systems.  相似文献   

20.
This work presents an adaptive fuzzy sliding mode controller (AFSMC) that combines a robust proportional integral control law for use in designing single-input single-output (SISO) nonlinear systems with uncertainties and external disturbances. The fuzzy logic system is used to approximate the unknown system function and the AFSMC algorithm is designed by used of sliding mode control techniques. Based on the Lyapunov theory, the proportional integral control law is designed to eliminate the chattering action of the control signal. The simplicity of the proposed scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense if all the signals involved are uniformly bounded. Simulation studies have shown that the proposed controller shows superior tracking performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号