首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the trajectory following problem of a robot manipulator, a new linear learning control law, consisting of the conventional proportional-integral-differential (PID) control law, with respect to position tracking error, and an iterative learning term is provided. The learning part is a linear feedback control of position, velocity, and acceleration errors (PDD2). It has been shown that, under the proposed learning control, the position, velocity, and acceleration tracking errors are asymptotically stable in the presence of highly nonlinear dynamics. The proposed control is robust in the sense that exact knowledge about nonlinear dynamics is not required except for the bounding functions on their magnitudes. Further, neither is linear approximation of nonlinear dynamics nor repeatability of robot motion required.  相似文献   

2.
This paper presents a tracking control with guaranteed prescribed performance (PP) for space free-flying robots with uncertain kinematics (Jacobian matrix) and dynamics, uncertain normal force parameter, and bounded disturbances in a compliant contact with a planar surface. Given the orientation of the surface and a nonlinear model of the elastic force, a controller is designed requiring no information on the robot parameters and the disturbances. This controller will guarantee that the tracking errors satisfy PP indexes such as the maximum steady-state errors and overshoots, and the minimum convergence rates. Thus, contact maintenance can be ensured as prescribed. An approximation of the Jacobian is utilized in the presence of uncertain robot kinematics, and PP position/attitude tracking of the free-flying base is achieved in addition to the PP force/position tracking of the manipulator’s fingertip. The proposed controller is based on an error transformation technique, and a directly tunable gain for the transformed error feedback is introduced in the control to trade off between the tracking performance and control effort. Numerical simulations and comparisons demonstrate the effectiveness and superiority of the proposed controller.  相似文献   

3.
In this study, a SCARA robot manipulator is simulated under PD and learning based controllers. The trajectory following performance of the robot is studied against these controllers. The adaptive/learning hybrid controller scheme and learning controller method are utilized as learning based controllers. The results of simulations show that, learning algorithm based controllers reduce the position tracking error effectively. The hybrid adaptive/learning controller has similar performance as the learning controller although it uses partial state information and compensates both mechanical and electrical dynamics, whereas the learning controller needs both position and velocity measurements neglecting electrical dynamics.  相似文献   

4.
The solution of inverse kinematics problem of redundant manipulators is a fundamental problem in robot control. The inverse kinematics problem in robotics is the determination of joint angles for a desired cartesian position of the end effector. For the solution of this problem, many traditional solutions such as geometric, iterative and algebraic are inadequate if the joint structure of the manipulator is more complex. Furthermore, many neural network approaches have been done to this problem. But the neural network-based solutions are not much reliable due to the error at the end of learning. Therefore, a reliability-based neural network inverse kinematics solution approach has been presented, and applied to a six-degrees of freedom (dof) robot manipulator in this paper. The structure of the proposed method is based on using three networks designed parallel to minimize the error of the whole system. Elman network, which has a profound impact on the learning capability and performance of the network, is chosen and designed according to the proposed solution method. At the end of parallel implementation, the results of each network are evaluated using direct kinematics equations to obtain the network with best result.  相似文献   

5.
Four variants of Particle Swarm Optimization (PSO) are proposed to solve the obstacle avoidance control problem of redundant robots. The study involved simulating the performance of a 5 degree-of-freedom (DOF) robot manipulator in an environment with static obstacle. The robot manipulator is required to move from one position to a desired goal position with minimum error while avoiding collision with obstacles in the workspace. The four variants of PSO are namely PSO-W, PSO-C, qPSO-W and qPSO-C where the latter two algorithms are hybrid version of the first two. The hybrid PSO is created by incorporating quadratic approximation operator (QA) alongside velocity update routine in updating particles' position. The computational results reveal that PSO-W yields better performance in terms of faster convergence and accuracy.  相似文献   

6.
This paper considers the trajectory tracking problem for uncertain robot manipulators and proposes two adaptive controllers as solutions to this problem. The first controller is derived under the assumption that the manipulator state is measurable, while the second strategy is developed for those applications in which only position measurements are available. The adaptive schemes are very general and computationally efficient since they do not require knowledge of either the mathematical model or the parameter values of the manipulator dynamics, and are implemented without calculation of the robot inverse dynamics or inverse kinematic transformation. It is shown that the control strategies ensure uniform boundedness of all signals in the presence of bounded disturbances, and that the ultimate size of the tracking errors can be made arbitrarily small. Experimental results are presented for a PUMA 560 manipulator and demonstrate that accurate and robust trajectory tracking can be achieved by using the proposed controllers.  相似文献   

7.
This work proposes a redundant arm torque controller for reaching, guaranteeing desired completion time and accuracy requirements without the need for trajectory planning and prior knowledge of robot dynamics. The proposed controller is designed based on the prescribed performance control methodology and it is a reaching regulator in which the target pose for the hand acts as an attractor for the arm. It provides configuration consistency in return motions and hand and joint velocity smoothness. Its use in an admittance control scheme given measurements or estimates of external forces is also proposed providing active compliance capabilities in robot–environment interactions. Simulation studies for a 5dof human arm-like robot and experiments with a 7dof arm are performed to verify the approach and demonstrate the proposed controller’s performance.  相似文献   

8.
We consider the goal of ensuring robust stability when a given manipulator feedback control law is modified online, for example, to safely improve the performance by a learning module. To this end, the factorization approach is applied to both the plant and controller models to characterize robustly stabilizing controllers for rigid‐body manipulators under approximate inverse dynamics control. Outer‐loop controllers to stabilize the nonlinear uncertain loop that results from approximate inverse dynamics are often derived by lumping uncertainty in a single term and subsequent analysis of the error system. Here, by contrast, the well‐known norm bounds of these uncertain dynamics are first recast into a generalized plant configuration that preserves the characteristic uncertainty structure. Then, the overall loop uncertainty is expressed with respect to the nominal outer‐loop feedback controller by means of an uncertain dual‐Youla operator. Therefore, using the dual‐Youla parameterization, we provide a novel way to rigorously quantify permissible perturbations of robot manipulator feedforward/feedback controllers. The method proposed in this paper does not constitute another robust control law for rigid‐body manipulators, but rather a characterization of a set of robustly stabilizing controllers. The resulting double‐Youla parameterization for the control of robot manipulators is amenable to numerous advanced design methods. The result is thoroughly discussed by a planar elbow manipulator and exemplified with a six‐degree‐of‐freedom robot scenario with varying payload.  相似文献   

9.
空间机器人最优能耗捕获目标的自适应跟踪控制   总被引:1,自引:0,他引:1  
柳强  金明河  刘宏  王滨 《机器人》2022,44(1):77-89
提出了一种能够引导末端执行器以期望速度跟踪目标的轨迹规划方法。该方法可以实现避障并满足关节限制要求。基于轨迹规划方法,设计了一种利用自由飘浮空间机器人跟踪与捕获章动自旋卫星的自适应控制策略。此外,该控制策略还考虑了最优能耗、测量误差和优化误差。首先,为了使执行器的跟踪误差和机械臂的能耗最小,将空间机器人的控制策略描述为一个关于关节速度、力矩和避障距离的不等式约束优化问题。然后,推导出一个系数为下三角矩阵的显式状态方程,并对目标函数进行解耦和线性化。设计了一种关节速度和力矩分段优化方法去代替传统的凸二次规划方法求解最优问题,这种方法具有较高的计算效率。最后,利用李雅普诺夫稳定性理论验证了所提控制方法的收敛性。  相似文献   

10.
This paper proposes two simple adaptive control schemes of robot manipulators. The first one is the state feedback control which consists of feedforward from the desired position trajectory, PD feedback from the actual trajectory, and an auxiliary input. The second one is the feedforward/feedback control which consists of a feedforward term from the desired position, velocity, and acceleration trajectory based on the inverse of robot dynamics. The feedforward, feedback, and auxiliary gains are adapted using simple equations derived from the decentralized adaptive control theory based on Lyapunov's direct method, and using only the local information of the corresponding joint. The proposed control schemes are computationally fast and do not require a priori knowledge of the detail parameters of the manipulator or the payload. Simulation results are presented in support of the proposed schemes. The results demonstrate that both controllers perform well with bounded adaptive gains.  相似文献   

11.
This study addresses the problem of controlling a redundant manipulator with both state and control dependent constraints. The task of the robot is to follow by the end-effector a prescribed geometric path given in the task space. The control constraints resulting from the physical abilities of robot actuators are also taken into account during the robot movement. Provided that a solution to the aforementioned robot task exists, the Lyapunov stability theory is used to derive the control scheme. The numerical simulation results, carried out for a planar manipulator whose end-effector follows a prescribed geometric path given in a task space, illustrate the trajectory performance of the proposed control scheme.  相似文献   

12.
《Advanced Robotics》2013,27(13-14):1817-1838
We propose a path-tracking algorithm that is developed using an iterative learning control (ILC) technique and use the algorithm to control an omni-directional mobile robot. The proposed algorithm can be categorized as an open–closed PD-type ILC; it generates robot velocity commands by a PD-type ILC update rule using both previous and current information. When applied to the omni-directional mobile robot, it can decrease position errors and track the desired trajectory. Under the general problem setting that includes a mobile robot, we show that the proposed algorithm guarantees that the system states, outputs and control inputs converge to within small error bounds around the desired ones even under state disturbances, measurement noises and initial state errors. By using simulation and experimental tests, we demonstrate that the proposed algorithm converges fast to the desired path, and results in small root-mean-square (r.m.s.) position error under various surface conditions. The proposed algorithm shows better path-tracking performance than the conventional PID algorithm and achieves faster convergence and lower r.m.s. error than the existing two ILC algorithms.  相似文献   

13.
《Advanced Robotics》2013,27(4):411-431
This paper proposes a motion planning method for a mobile manipulator. In general, humans can grasp an object by various ways which depend on object posture, position and so on. The objective of this paper is to present how to detect the pose of a mobile manipulator under the condition that several ways of grasping are given to the robot. Motion errors and object position errors are considered to detect robot pose in our method because these affect the grasp motion of the robot hand. Coping with these errors, we will propose an effective pose searching method for a mobile manipulator from numerous pose candidates. The performance of the proposed method is illustrated by simulation and experiment.  相似文献   

14.
For the trajectory following problem of a robot manipulator, a simple linear robust fedback control law with constant gain matrix is proposed that makes the resulting error system uniformly ultimately bounded. This control law is very easy to implement by simply choosing a feedback gain according to the coefficients of a polynomial function of the tracking errors which is a bounding function for the terms in the Lagrange-Euler formulation. In the limit as the gain approaches infinity the error system becomes globally asymptotically stable  相似文献   

15.
The article presents simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecture. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal, and a force feedforward term, and achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers as well as an auxiliary signal, and accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in online control with high sampling rates. The methods are applied to a two-link manipulator for simultaneous force and position control. Simulation results confirm that the adaptive controllers perform remarkably well under different conditions.  相似文献   

16.
It is shown for the first time that, even if there exist nonlinear unknown dynamics, aPD feedback control without higher-order nonlinear compensation can guarantee global stability for the trajectory following problem of a robot manipulator. ThePD control under investigation is a position and velocity feedback control with a time-varying gain, and does not contain any higher-order nonlinearity. The proposed control is in general continuous and does not require any knowledge of robotic systems except size bounding function on nonlinear dynamics. Asymptotic stability of velocity tracking error and arbitrarily small position tracking error are guaranteed. Another novel and interesting result shown in this paper is that a measure on protection against saturation of actuators has been incorporated into consideration of control design and robustness analysis.This work is supported in part by U.S. National Science Foundation under grant MSS-9110034.  相似文献   

17.
基于观测器的机械手神经网络自适应控制   总被引:3,自引:0,他引:3  
提出了一种基于观测器的机械手神经网络自适应轨迹跟随控制器设计方法,这里机 械手的动力学非线性假设是未知的,并且假设机械手仅有关节角位置测量.文中采用一个线 性观测器重构机械手的关节角速度,用神经网络逼近修正的机械手动力学非线性,改进系统 的跟随性能.基于观测器的神经网络自适应控制器能够保证机械手角跟随误差和观测误差的 一致终结有界性以及神经网络权值的有界性,最后给出了机械手神经网络自适应控制器-观 测器设计的主要理论结果,并通过数字仿真验证了所提方法的性能.  相似文献   

18.
In robot constrained motion problems on planar surfaces with frictional contacts, uncertainties on the contacted surface not only affect the control system performance but also distort control targets. The surface normal direction cosines are in this case uncertain parameters that are involved in both the control law and the control targets. This work proposes an adaptive learning controller that uses force and joint position/velocity measurements to simultaneously learn the surface orientation and achieve the desired goal. Simulation examples for a 6 dof robot are used to illustrate the theoretical results and the performance of the proposed controller in practical cases.  相似文献   

19.
Hanlei  Yongchun   《Automatica》2009,45(9):2114-2119
It has been about two decades since the first globally convergent adaptive tracking controller was derived for robots with dynamic uncertainties. However, not until recently has the problem of concurrent adaptation to both the kinematic and dynamic uncertainties found its solution. This adaptive controller belongs to passivity-based control. Though passivity-based controllers have many attractive properties, in general, they are not able to guarantee the uniform performance of the robot over the entire workspace. Even in the ideal case of perfect knowledge of the manipulator parameters, the closed-loop system remains nonlinear and coupled. Thus the closed-loop tracking performance is difficult to quantify, while the inverse dynamics controllers can overcome these deficiencies. Therefore, in this work, we will develop a new adaptive Jacobian tracking controller based on the inverse manipulator dynamics. Using the Lyapunov approach, we have proved that the end-effector motion tracking errors converge asymptotically to zero. Simulation results are presented to show the performance of the proposed controller.  相似文献   

20.
Chian-Song  Kuang-Yow  Tsu-Cheng 《Automatica》2004,40(12):2111-2119
In the presence of uncertain constraint and robot model, an adaptive controller with robust motion/force tracking performance for constrained robot manipulators is proposed. First, robust motion and force tracking is considered, where a performance criterion containing disturbance and estimated parameter attenuations is presented. Then the proposed controller utilizes an adaptive scheme and an auxiliary control law to deal with the uncertain environmental constraint, disturbances, and robotic modeling uncertainties. After solving a simple linear matrix inequality for gain conditions, the effect from disturbance and estimated parameter errors to motion/force errors is attenuated to an arbitrary prescribed level. Moreover, if the disturbance and estimated parameter errors are square-integrable, then an asymptotic motion tracking is achieved while the force error is as small as the inversion of control gain. Finally, numerical simulation results for a constrained planar robot illustrate the expected performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号