首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文在分析了传统几何造型的弊端及开曲面造型中光滑边界曲线的插值要求后,针对细分曲面造型方法中较常用的Loop细分,提出了基于边界采样技术的插值细分曲面造型方法。该方法一方面利用了细分曲面造型的优点,如算法简单、可表达任意拓扑结构等;另一方面又满足了工程应用中插值边界曲线的要求。文中详细讨论该算法的步骤,并通过示例验证了该算法的有效性和实用性。  相似文献   

2.
Loop型半静态细分方法   总被引:1,自引:1,他引:1  
在拓展四次三方向Box-样条曲面离散定义的基础上,导出了半静态Loop细分方法,并构造了该细分方法的二邻域细分矩阵.通过对细分矩阵特征值的理论分析,证明了文中方法的细分极限曲面收敛且切平面连续.半静态Loop细分方法的细分矩阵随细分次数规则变化,与传统Loop细分方法相比,该方法具有更大的灵活性和更丰富的造型表现能力.  相似文献   

3.
曲面造型一直是计算机图形学的重要研究内容之一。曲面的显示效果涉及到数据的存储结构及对数据的操作方法等多方面的知识。网格细分是曲面的一种表示方法,但却是目前广泛使用的一种曲面造型方法。而三角网格细分的许多算法已经成功地应用于许多领域。本文介绍了曲面造型的相关理论,重点介绍了Loop细分算法及其在重建隧道三维结构中应用。  相似文献   

4.
针对Loop细分模式细分后的曲面不可控的缺点,提出利用反求控制点的方法对Loop细分模式进行改进,改进后的算法不仅形成光滑的曲面,同时可以过原始的控制点。实验证明,改进的Loop细分模式算法行之有效,可以广泛应用于曲面的造型设计和三维重建。  相似文献   

5.
可调自适应三角网格的细分曲面造型方法   总被引:1,自引:0,他引:1  
为了研究一种简单的有效的细分曲面方法使生成的曲面不仅光滑而且可调,提出了一种面向三角网格的可调自适应细分曲面造型法,该方法通过在传统的Loop细分模式中加入形状控制因子以使生成的曲面形状可调,同时引入二面角作为控制误差来判断相邻三角形夹角是否满足给定的阈值,以此实现自适应细分过程。模拟算例结果表明,该方法不仅能用较少网格获得性能良好的曲面,而且可以通过选取不同的值调整生成曲面形状,满足工程需要。  相似文献   

6.
细分曲面造型技术是一种基于样条可细化性质基础上的以网格细分为特征的离散造型方法,具有表示的任意拓扑性,光滑保证性,计算简单性等传统方法难以比拟的优点。本文介绍了常用几种细分方法的细分规则及其应用。如Loop细分法、蝴蝶改进法、Cat-mull Clark法和Doo-Sabin法。  相似文献   

7.
蜂窝细分   总被引:9,自引:0,他引:9  
张宏鑫  王国瑾 《软件学报》2002,13(7):1199-1208
给出了一类新颖的基于六边形网络的细分方法,该方法拓广了细分曲面的种类,被形象地称为蜂窝细分法,通过引入中心控制点的概念,使蜂窝细分具有参数选取灵活,形状控制容易,网格复杂性增长缓慢,适用范围广等优点,分析了蜂窝细分方法的极限性质以及参数选取规则,可保证细分曲面处处达到切平面连续,并在适当条件下具有插值能力,该方法适用于动画造型和工业造型设计。  相似文献   

8.
细分曲面造型技术是一种基于样条可细化性质基础上的以网格细分为特征的离散造型方法,具有表示的任意拓扑性,光滑保证性,计算简单性等传统方法难以比拟的优点.本文介绍了常用几种细分方法的细分规则及其应用.如Loop细分法、蝴蝶改进法、Catmull Clark法和Doo-Sabin法.  相似文献   

9.
提出了一种基于四边形网格的可调细分曲面造型方法。该方法不仅适合闭域拓扑结构,且对初始网格是开域的也能进行处理。细分算法中引入了可调参数,增加了曲面造型的灵活性。在给定初始数据的条件下,曲面造型时可以通过调节参数来控制极限曲面的形状。该方法可以生成C1连续的细分曲面。试验表明该方法生成光滑曲面是有效的。  相似文献   

10.
细分曲面的生成被广泛应用于计算机图形研究和几何建模应用。本文以Loop细分模式为例,研究了使用OpenGL与VRML在Windows环境下细分曲面的生成。介绍了细分造型技术的原理和OpenGL与VRML文件的结构,并利用它们强大的功能开发出细分曲面造型的系统。  相似文献   

11.
提出基于Loop细分方法的曲线插值方法,不需要修改细分规则,只需以插值曲线的控制多边形为中心多边形,向其两侧构造对称三角网格带,该对称三角网格带将收敛于插值曲线。因此,包含有该三角网格带的多面体网格的极限曲面将经过插值曲线。若要插值多条相交曲线只需在交点处构造全对称三角网格。运用该方法可在三角网格生成的细分曲面中插值多达六条的相交曲线。  相似文献   

12.
首先研究了传统的Loop细分曲面算法,通过分析发现随着细分次数的增多细分算法中三角形网格片数增长过快。针对这一问题提出一种自适应细分曲面算法。算法根据相邻两个三角形面上的法向量的夹角,判断细分网格中较为光滑和非光滑的区域。实验结果表明,算法提高了数据处理速度,并且模型简单易实现。  相似文献   

13.
面向三角网格的自适应细分   总被引:4,自引:0,他引:4  
细分曲面存在的一个问题是随着细分次数的增多,网格的面片数迅速增长,巨大的数据量使得细分后的模难以进行其它处理。针对这个问题,该文利用控制点的局部信息提出了一种基于Loop模式的自适应细分算法,利用该算法可避免在相对光滑处再细分,与正常细分相比,既大大减少了数据量,提高了模型的处理速度,又达到了对模型进行细分的目的。  相似文献   

14.
针对Loop 细分无法调整形状与不能插值的问题,提出了一种形状可调的Loop 细分 曲面渐进插值方法。首先给出了一个既能对细分网格顶点统一调整又便于引入权因子实现细分曲 面形状可调的等价Loop 细分模板。其次,通过渐进迭代调整初始控制网格顶点生成新网格,运 用本文的两步Loop 细分方法对新网格进行细分,得到插值于初始控制顶点的形状可调的Loop 细分曲面。最后,证明了该方法的收敛性,并给出实例验证了该方法的有效性。  相似文献   

15.
细分小波近年来发展迅速,在计算机图形显示、渐进网格传输和网格多分辨率编辑等领域获得了广泛的应用。Bertram提出的Loop细分小波是基于提升格式的双正交细分小波的典型范例,它所针对的对象均为网格的内部顶点。目前尚未发现相关文献提及细分小波对于边界的处理。该文在Loop细分小波算法的基础上,给出了一种Loop细分小波边界处理的方法,经验证效果令人满意。  相似文献   

16.
论文主要研究混合网格的曲面细分问题,提出了一种带有可调参数的细分算法。该算法适用于多边形网格、三角形网格,以及两者的混合网格情形,且对开的和闭的拓扑结构都能进行处理。由于在算法中引入了可调参数,这样既可产生光滑曲面,也可产生具有尖锐特征的曲面,且通过调整参数还可产生标准的Catmull-Clark细分和Loop细分。另外,实现该算法不需要复杂的数据结构。  相似文献   

17.
自由曲面设计从工业制造到建筑设计都有着广泛的应用.文中将细分算法与几何偏微分方程方法相结合,构建一种统一的自由曲面设计方法.该方法将曲面扩散流作为演化方程,曲面的控制网格是三角形和四边形混合型网格;数值模拟采用Loop和Catmull-Clark混合细分的有限元方法,通过方程演化得到混合细分曲面的控制网格.数值实验结果表明,文中方法能构造高质量的曲面.此研究呈现出一种新颖的构造几何偏微分方程细分曲面的技术.  相似文献   

18.
带尖锐特征的Loop细分曲面拟合系统   总被引:15,自引:2,他引:13  
实现了一个基于带尖锐特征的Loop细分曲面的三角网格拟合系统,其基本原理来自文献,但在系统设计层面对原算法作了相当大的补充和完善.整个系统框架包括尖锐特征提取、保持尖锐特征的三角网格简化、保持尖锐特征的网格平滑和拓扑优化、基于最近点策略的重采样和线性拟合系统求解.所得到的拟合曲面质量较原来的结果有了显著提高。  相似文献   

19.
为了提高矢量化图像的重构质量,提出一种基于细分曲面的误差可控矢量化算法.首先提取图像特征,构建特征约束的初始网格,并利用二次误差度量方法简化初始网格,得到特征保持的基网格;然后利用带尖锐特征的Loop细分曲面拟合图像颜色,得到控制网格;最后计算重构图像的误差,对控制网格进行自适应细分,直至重构误差达到用户需求.实验结果表明,该算法能够大幅度提高初始重构结果的质量,并在一定程度上做到误差可控.  相似文献   

20.
基于细分小波的多分辨率分析是近年来三维图形处理的重要方法,该方法在图形的压缩,去噪,渐近显示和传输,多分辨率绘制和编辑等领域已有很多研究与应用。最近Maria Charina等人提出了一种新的基于细分小波紧框架的多分辨率分析理论,使得细分小波框架在三维图形处理领域的应用成为值得研究的新课题。在深入学习和研究这种全新的多分辨率分析理论的基础上,详细推导了Loop细分小波紧框架的分解和重构公式,应用这些公式实现了多分辨率曲面的构造并将其应用到三维网格图形的渐进传输和去噪中。通过与M.Bertram的双正交Loop细分小波算法的对比,表明基于Loop细分小波紧框架的多分辨率分析算法具有较好的渐进传输和去噪效果。由于通常的输入网格不具有细分连通性,而基于细分曲面的多分辨率分析算法要求它所处理的网格具有这种连通性,所以还特别提出了一种构造既能逼近输入网格又具有细分连通性的网格的简捷算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号