首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对多移动机器人编队中的领航者和跟随者同时受系统内部未建模动态和风向、路面平整度等内外扰动影响而带来的无法保持编队队形的问题,提出了基于扩张状态观测器(ESO)的模型预测(MPC)编队控制方法。首先,建立带有扰动项的领航跟随编队模型,然后分别设计ESO对领航者和跟随者所受扰动进行估计,将该编队模型进行线性化离散化处理作为MPC编队控制器的预测模型,在预测输出方程中引入对扰动的估计结果,最后通过滚动优化求解最优控制律,实现对多移动机器人的鲁棒编队控制。仿真实验结果验证了所提出的控制方法的有效性。  相似文献   

2.
基于轨迹跟踪车式移动机器人编队控制   总被引:2,自引:0,他引:2  
针对车式移动机器人的运动学模型特点, 提出一种基于轨迹跟踪多机器人编队控制方法. 首先利用编队结构参数确定队形, 根据编队轨迹和相关参数生成虚拟机器人, 把编队控制转化为跟随机器人对虚拟机器人的轨迹跟踪; 然后运用反步法构造车式移动机器人轨迹跟踪系统的Lyapunov 函数, 通过使该函数负定, 得到跟随机器人的轨迹跟踪控制器; 最后在Microsoft robotics developer studio 4 (MRDS4) 中搭建3D 仿真平台, 设计了3 组实验, 所得结果表明了所提出方法的有效性.  相似文献   

3.
基于路径参数协同的多移动机器人编队控制   总被引:1,自引:0,他引:1  
为了使每个机器人沿期望的跟踪路径运动,建立了一种基于路径参数协同的多移动机器人编队控制模型.模型将整个系统的控制分为两部分:-部分用Lyapunov和反演技术设计了路径跟踪控制器,另-部分为路径参数协同控制器,保证每个机器人期望跟踪路径的参数变量能够实现协同,进而达到对编队的控制.采用结构模型完全>分布,并且适用于机器人不同集群任务需求,可易于仿真实现.使用控制方案仅需要机器人之间交互路径参数信息,通讯需求量小,满足实际工程需求.仿真结果验证了所提算法的有效性.  相似文献   

4.
基于扰动观测器的AUVs固定时间编队控制   总被引:1,自引:0,他引:1  
高振宇  郭戈 《自动化学报》2019,45(6):1094-1102
考虑含有模型参数不确定及未知海洋扰动的多AUVs协同编队问题,本文提出一种新的控制方法,该方法可保证编队在固定时间内实现.首先,将模型参数不确定及海洋扰动看作复合扰动,设计扰动观测器,实现固定时间内对扰动的精确估计.基于扰动观测器,指令滤波技术、固定时间理论及虚拟轨迹概念,设计编队控制律,实现编队目标,并保证闭环系统中的所有信号是全局固定时间稳定的.最后通过两艘AUV的编队仿真验证了所提算法的有效性.  相似文献   

5.
本文针对由领航跟随控制策略协调运动的多移动机器人编队,研究跟随机器人存在打滑状态的自适应控制器设计问题.首先,通过移动机器人打滑状态的运动学特性分析,建立“距离–角度”编队控制模型.然后,利用径向基函数神经网络(RBF NN)对系统中由打滑引起的未知信息,构建非线性逼近器;并根据李雅普诺夫稳定性理论和非线性有界扰动稳定性理论,证明了设计的嵌入了RBF NN的自适应控制器能保证闭环控制系统状态的收敛和有界.通过分析编队误差控制模型,可将不打滑状态视为系统的一种特殊情况,而嵌入控制器中的RBF NN能自适应打滑和不打滑两种状态,从而使得控制器在两种状态下均有效.最后利用仿真研究,验证了本文所提方法的正确性和有效性.  相似文献   

6.
杨芳  王朝立 《自动化学报》2011,37(7):857-864
研究了带有固定在天花板上的摄像机系统的非完整动态移动机器人的镇定问题. 首先, 利用针孔摄像机模型引入了基于摄像机目标的视觉伺服运动学模型,并针对该运动学模型给出了一个运动学镇定控制器. 然后,在摄像机参数不确定的情形下设计了一个自适应滑模控制器实现了不确定动态移动机器人的镇定. 提出的控制器不仅对结构不确定性如质量变化, 而且对无结构不确定性如外部扰动都具有鲁棒性. 通过Lyapunov方法严格证明了提出的控制系统的稳定性和估计参数的有界性. 仿真结果证实了控制律的有效性.  相似文献   

7.
针对扰动下电驱动非完整移动机器人固定时间编队控制问题,通过引入包含驱动器动力学的领航者-跟随者状态空间动力学模型,分两步对编队控制器进行了设计。对领航者跟随者编队运动学模型进行了多变量固定时间控制设计。在动力学层面,为实现扰动下的速度跟踪,通过辅助输入设计了一种跟随者机器人多变量超螺旋固定时间连续电压控制器。所提算法使机器人编队克服了跟随者机器人所受干扰,确保了跟随者机器人与领航者在固定时间达到期望队形,跟随者在固定时间内跟随期望速度,设计的连续控制消除了开关控制的抖振现象。通过参数设计提前给定系统收敛的固定时间,与系统初始状态无关。基于Lyapunov方法进行了系统稳定性分析。通过仿真对算法进行了验证。  相似文献   

8.
在轮式移动机器人协同编队问题中,如何保证移动机器人在追踪自身期望轨迹的同时,又能实现与其他机器人运动同步的问题对控制算法的设计提出了更高的要求.本文提出一种基于图论的鲁棒自适应同步终端滑模控制算法来解决这一问题.首先介绍了轮式移动机器人非线性运动学瞬态模型,该模型避免了一般运动学模型多输入耦合互相干扰的问题.然后根据交叉耦合误差设计同步控制算法实现运动同步,通过鲁棒控制对系统外部干扰进行抑制,自适应律保证切换增益实时调节.运用Lyapunov方法进行了稳定性分析,证明了系统追踪误差的收敛性.最后通过MATLAB仿真验证了所设计算法的有效性.  相似文献   

9.
离轴式拖车移动机器人属于非完整系统,当车头线速度随时间变化且过零变号时,难以用一个控制器实现系统对期望路径的跟踪.本文研究离轴式拖车移动机器人系统的任意路径跟踪问题.首先由系统和虚拟小车的运动学方程得到误差状态模型,线性化后用坐标变换将其化为标准型,然后基于Lyapunov方法构造出一种跟踪控制律.只要车头的运动线速度有界且不趋于零,其导数有界,则所设计的控制律就可以保证系统跟踪任意的期望路径,且跟踪误差最终一致有界,最终界的大小与期望路径的曲率变化率成比例.当期望路径的曲率变化率为零或趋于零时,所设计的控制律可以保证拖车移动机器人指数收敛到期望路径.仿真结果证实了控制律的有效性.  相似文献   

10.
针对一类含有参数不确定性和未知非线性扰动的系统,本文提出一种基于扰动补偿的无微分模型参考自适应控制方法,实现系统输出对参考模型输出信号的高精度跟踪.首先,利用被控对象模型信息设计扰动估计器,对系统非线性扰动进行在线估计;其次,基于非线性扰动估计值设计参考模型和无微分参数更新律,构建无微分模型参考自适应控制器,建立基于扰动补偿和状态反馈的自适应控制律,以消除参数不确定性和非线性扰动对系统输出的影响,保证系统输出对参考模型输出的准确跟踪;然后,给出闭环系统误差信号收敛条件和控制器参数整定方法;最后,通过数值仿真验证所提方法的有效性和优越性.  相似文献   

11.
Unknown model uncertainties and external disturbances widely exist in helicopter dynamics and bring adverse effects on control performance. Optimal control techniques have been extensively studied for helicopters, but these methods cannot effectively handle flight control problems since they are sensitive to uncertainties and disturbances. This paper proposes an observer-based robust optimal control scheme that enables a helicopter to fly optimally and reduce the influence of unknown model uncertainties and external disturbances. A control Lyapunov function (CLF) is firstly constructed using the backstepping method, then Sontag's formula is utilized to design an inverse optimal controller to stabilize the nominal system. Furthermore, it is stressed that the radial basis function (RBF) neural network is introduced to establish an observer with adaptive laws, approximating and compensating for the unknown model uncertainties and external disturbances to enhance the robustness of the closed-loop system. The uniform ultimate boundedness of the closed-loop system is ensured using the presented control approach via Lyapunov stability analysis. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control strategy.  相似文献   

12.

针对具有模型不确定和未知外部干扰的自治飞艇, 提出了直接自适应模糊路径跟踪控制方法. 该方法由路径跟踪控制和自适应模糊控制两部分组成. 首先基于飞艇的平面运动模型设计路径跟踪控制律, 包括制导律计算、偏航角跟踪和速度控制3 部分; 然后构造直接自适应模糊控制器逼近路径跟踪控制律中的不确定项. 稳定性分析证明所设计的控制律能使飞艇跟踪给定的期望路径, 跟踪误差收敛到原点的小邻域内. 仿真结果验证了所提出方法的有效性.

  相似文献   

13.
鲜斌  李宏图 《控制与决策》2021,36(10):2490-2496
研究了基于分布式通信网络的多无人机时变编队控制问题,考虑到外界扰动对多无人机协同编队系统的影响,提出一种新的连续非线性鲁棒编队控制方法.首先基于一致性方法构造了分布式无人机编队误差系统,降低了编队控制器对全局编队信息的要求;然后采用一种基于误差符号函数积分的鲁棒控制算法补偿未知外界扰动的影响,提高了无人机编队系统的鲁棒性,并基于Lyapunov分析的方法,证明了多无人机编队误差的半全局渐进收敛性;最后在四旋翼无人机编队实验平台上进行了多无人机时变编队的实时实验验证,实验结果表明,所提出的分布式编队控制算法可以实现多无人机时变编队控制,且具有较好的协同性能和抗干扰能力.  相似文献   

14.
Wang  Dongliang  Wei  Wu  Wang  Xinmei  Gao  Yong  Li  Yanjie  Yu  Qiuda  Fan  Zhun 《Applied Intelligence》2022,52(3):2510-2529

Aiming at the formation control of multiple Mecanum-wheeled mobile robots (MWMRs) with physical constraints and model uncertainties, a novel robust control scheme that combines model predictive control (MPC) and extended state observer-based adaptive sliding mode control (ESO-ASMC) is proposed in this paper. First, a linear MPC strategy is proposed to address the motion constraints of MWMRs, which can transform the robot formation model based on leader-follower into a constrained quadratic programming (QP) problem. The QP problem can be solved iteratively online by a delay neural network (DNN) to obtain the optimal control velocity of the follower robot. Then, to address the input saturation constraints, model uncertainties and unknown disturbances in the dynamic model, an improved ESO-ASMC is proposed and compared with the robust adaptive terminal sliding mode control (RATSMC) and the conventional sliding mode control (SMC) to prove the effectiveness. The proposed scheme, considering the optimal control velocity obtained by the kinematics controller as the given desired velocity of the dynamics controller, can implement precise formation control, while solving various physical constraints of the robot, and eliminating the effects of model uncertainties and disturbances. Finally, through a comparative simulation case, the effectiveness and robustness of the proposed method are verified.

  相似文献   

15.
沈智鹏  张晓玲 《自动化学报》2018,44(10):1833-1841
针对三自由度全驱动船舶存在模型不确定和未知外部环境扰动的情况,设计出一种基于非线性增益递归滑模的船舶轨迹跟踪动态面自适应神经网络控制方法.该方法综合考虑船舶位置和速度误差之间关系设计递归滑模面,引入神经网络对船舶模型不确定部分进行逼近,设计带σ-修正泄露项的自适应律对神经网络逼近误差与外界环境扰动总和的界进行估计,并应用一种非线性增益函数构造动态面控制律,选取李雅普诺夫函数证明了该控制律能够保证轨迹跟踪闭环系统内所有信号的一致最终有界性.最后,基于一艘供给船进行仿真验证,结果表明,船舶轨迹跟踪响应速度快、精度高,所设计控制器对系统模型参数摄动及外界扰动具有较强的鲁棒性.  相似文献   

16.
In this paper, direct adaptive-state feedback control schemes are developed to solve the robust tracking and model matching control problem for a class of distributed large scale systems with actuator faults, faulty and perturbed interconnection links, and external disturbances. The adaptation laws are proposed to update the controller parameters on-line when all the eventual faults, the upper bounds of perturbations and disturbances are assumed to be unknown. Then a class of distributed state feedback controllers is constructed to automatically compensate the fault, perturbation and disturbance effects based on the information from adaptive schemes. The proposed distributed adaptive tracking controller can ensure that the resulting adaptive closed-loop large-scale system is stable and the tracking error decreases asymptotically to zero in the presence of uncertain faults of actuators and interconnections, perturbations in interconnection channels, and disturbances. The proposed adaptive design technique is finally evaluated in the light of a simulation example.  相似文献   

17.
This paper develops an event-triggered-based finite-time cooperative path following (CPF) control scheme for underactuated marine surface vehicles (MSVs) with model parameter uncertainties and unknown ocean disturbances. First, a finite-time extended state observer (FTESO) is proposed, in which the FTESO can estimate the velocities and compound disturbances in finite time. Then, the finite-time LOS guidance law based on velocity estimation values is designed to obtain the desired surge velocity and the desired yaw rate. In order to realize the cooperative control of multiple paths in finite time, the cooperative control law for the path variable is designed. In addition, the relative threshold event-triggered control (ETC) mechanism is incorporated into the formation control algorithm, and an event-triggered-based finite-time CPF controller is designed, which not only effectively reduces the update frequency of controller and the mechanical loss of actuator but also improves the control performance of system. Furthermore, by using homogeneous method, Lyapunov theory, and finite-time stability theory, it is proved that under the proposed finite-time CPF control scheme, the formation errors can converge to a small neighborhood around origin in finite time. Finally, numerical simulation results illustrate the effectiveness of the proposed control scheme.  相似文献   

18.
未知不确定非线性系统的直接自校正滑模控制   总被引:2,自引:1,他引:1  
针对一类具有未知不确定性的非线性系统,提出一种参数直接自校正滑模控制方法.将系统的非线性、参数变化和外部干扰都视作系统不确定性,控制器的设计无需不确定项的上下界等信息:为改善跟踪性能与减小输入抖振,控制器设计中引入可调边界层厚度的双极性sigmoid函数与可变滑模切换增益,推导出控制增益和边界层厚度的直接自校正律,并基于Lyapunov判据给出了闭环系统稳定性证明.仿真实例证明了该方法的有效性和正确性.  相似文献   

19.
具有输入饱和的近空间飞行器鲁棒控制   总被引:1,自引:0,他引:1  
针对近空间飞行器这一类存在外部扰动,输入饱和和参数不确定的多输入多输出线性系统,提出了一种基于干扰观测器的抗饱和鲁棒控制方案.将干扰观测器与抗饱和控制技术相结合,从而消除系统存在的未知外部扰动、输入饱和和不确定性对系统控制的影响.首先,设计干扰观测器对线性外部系统产生的未知扰动进行估计.然后根据干扰观测器输出,通过超前抗饱和方法设计抗饱和补偿器,并将其加入到鲁棒控制器的设计中,保证闭环系统存在输入饱和、未知外部扰动和参数不确定情况下的稳定性.为便于设计,干扰观测器、抗饱和补偿器和控制器设计矩阵均通过求解线性矩阵不等式得到.最后,将提出的鲁棒抗饱和控制方法应用于近空间飞行器,仿真结果验证了该控制方案的有效性.  相似文献   

20.
沈智鹏  曹晓明 《控制与决策》2019,34(7):1401-1408
针对输入受限条件下四旋翼飞行器的轨迹跟踪控制问题,考虑系统存在模型动态不确定和未知外界干扰的情况,提出一种模糊自适应动态面轨迹跟踪控制方法.该方法设计干扰观测器估计位置模型中复合扰动项,利用模糊系统逼近姿态模型中不确定项和外界干扰,并引入双曲正切函数和辅助系统处理输入受限问题,结合反演法和动态面技术设计轨迹跟踪控制器,以降低控制算法的复杂性,最后选取李雅普诺夫函数证明闭环系统所有信号一致最终有界.应用大疆M100飞行器模型进行仿真验证,结果表明所设计的控制器能够有效处理模型动态不确定和未知外界干扰问题,避免飞行器工作过程中因输入饱和导致执行器失效现象,精确地完成轨迹跟踪控制任务.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号