首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
LM19是一种TO-92封装的微功耗温度传感器。主要特点:测温范围-55℃~ 130℃;工作电压范围2.4V~5.5V(特别适用于1节锂离子电池);温度与输出电压对应值如表1所示:在 30℃时测温最大误差±2.5℃,在整个测温范围内测温误差±3.5℃~±3.8℃(最大值);工作电流仅10μA;非线性误差±0.4%(典型值)。该温度传感器主要用于蜂窝电话、  相似文献   

2.
《电子技术应用》2017,(6):41-44
设计了一款电压随温度自适应变化,从而使驱动电流随温度自适应变化的过温保护电路。应用于LED驱动电路,具有滞回关断的特点,在恒流输出中增加温度自适应模块,设计简单而且比较稳定。基于0.5μm CMOS工艺,使用Cadence Spectre对电路进行仿真。仿真结果表明,基准电压精度高,温漂低,温度系数为1.6×10~(-5)/℃;LED电路在0~65℃,恒定输出350 mA,输出变化范围小于0.285%;在65~108℃范围内变化时,电流输出自适应范围为85 mA;在温度达到110℃时,关断信号为高电平,电路关断输出,直到温度下降到60℃时,电路重新开启。  相似文献   

3.
在研究旁路结构的磁电复合材料索力传感器检测方法基础上,运用铁磁性分子场理论和布洛赫自旋波方法,建立磁化强度与温度的函数关系,研究温度对检测精度的影响机理。提出一种并行装配的温度补偿传感器磁路结构,运用差分运算技术,设计具有分时共享信号调理功能的差动式信号处理电路,实现全温度范围的差动式自动补偿。试验表明,在0~20 kN变载下,-30℃~+80℃温度范围内,对诱导电压信号的波动影响小于1%,测量重复误差0.04%~0.30%,有效解决了温度补偿难题,能够满足索力检测工程要求。  相似文献   

4.
为了消除由于晶体管不匹配产生的随机失调对带隙基准源精度的影响,设计了一种采用斩波调制技术的带隙基准电压源。该方法采用对称性OTA的结构来减小带隙基准电压源的系统失调,并利用带隙基准核心电路中的与绝对温度成正比(PTAT)的电流源为OTA提供自适应偏置,从而较小了整个电路的功耗。通过基于0.35μm CMOS工艺并使用Cadence Spectre工具对电路进行仿真,结果表明:斩波频率为100 Hz时,基准电压在室温(27℃)的输出为1.232 V,该带隙基准的供电电压的范围为1.4~3 V;在电压为3 V时,在-40~125℃温度范围内的温度系数为24.6 ppm/℃。  相似文献   

5.
设计了一个带电源电压补偿和温度补偿的低功耗环形振荡器电路,环形振荡器采用受限于PTAT电流的反相器和普通CMOS反相器级联结构。由于电源电压和温度对这两种反相器传播延时的影响是相反的,利用这种相反的特性使得振荡器输出频率在电源电压和温度特性上得到补偿。该电路采用0.18μm CMOS工艺,测试结果显示在5 V电源电压以及27℃温度条件下,输出频率为263 k Hz,平均电流消耗为2.5μA。在3.5 V~5.5 V电源电压和-40℃~85℃的温度变化范围内,输出频率偏差在-2.3%~6.5%范围内。  相似文献   

6.
为了消除温度对陀螺模态匹配的影响,提出了一种实现微机械谐振陀螺在温度-30~60℃内实时自动模态匹配控制方法。驱动模态和检测模态的谐振频率跟温度成线性关系,两轴的谐振频差与温度也成线性关系,该方法以驱动模态谐振频率作为温度参考而获得两模态谐振频差,根据谐振频差实时调节静电调谐电压,使得检测模态谐振频率与驱动模态谐振频率匹配。实验结果表明:检测谐振频率和驱动谐振频率在温度-30~60℃范围内,匹配误差不超过0. 3 Hz,验证了该方法的可行性、匹配精度,同时证明本文所采用的开环控制方案的有效性。  相似文献   

7.
模拟集成温度传感器设计   总被引:1,自引:0,他引:1  
吴畏  黄倩 《传感器世界》2012,18(3):10-13
介绍了一种模拟集成温度传感器的电路设计。该电路利用双极性晶体管基极-发射极结压降与热力学温度T成比例的关系来实现温度的测量,并在6μm双极工艺线上投片成功。该电路在常温25℃下输出298.2μA的电流,在-55℃~150℃的工作温度范围内的误差不超过±3℃,非线性度误差不超过±0.4℃。  相似文献   

8.
针对压阻桥式传感器输出非线性与温度漂移两种非理想因素,建立了一种模拟域度下的非线性/温度漂移协同矫正模型?该模型主要包含线性化与温度漂移矫正模型,其中线性化模型通过对输出信号的负反馈采集与平方项矫正算法,实现对片外传感器的非线性矫正;而针对实际应用中温度漂移(零位漂移与灵敏度漂移)的非理想特性,提出一种基于片上温度查找表的可重构插值算法,该算法通过温度寻址式增益补偿技术与失调消除技术,分别实现灵敏度漂移与零位漂移矫正?仿真结果表明,该模型可将压力输入范围从0kPa至100kPa的非线性误差降低至0.049%FSR(FSR为满量程输出范围);在-30℃至85℃范围内,该模型可将零位误差降低至初始的0.092‰FSR, 灵敏度误差降低至0.034‰FSR?  相似文献   

9.
针对片内CMOS振荡器频率稳定性不高的问题,提出了一种对温度和工艺的补偿方案。基准电压在正温度电阻上产生一路负温度系数的电流,将其与带隙基准产生的PTAT电流进行叠加得到零温度系数的电流对电容充电;采用数字修调网络对电容进行修调,振荡器频率的工艺漂移被显著降低。仿真结果表明:典型工作条件下,振荡器中心频率为1 MHz,占空比为50%;当温度在-40℃~125℃范围内变化时,振荡器输出频率漂移仅为0.8%;对电容进行修调后,在三种不同的工艺角下,输出频率相对误差仅为1.23%。振荡器对温度和工艺偏差不敏感,表现出良好的稳定性。  相似文献   

10.
对一种基于纳米晶软磁合金的非接触式,用于测量转角、转速和转矩的多功能传感器进行了研究。介绍了传感器的结构和原理,推导出传感器的输出方程和灵敏度表达式。通过试验,分析了传感器激磁磁场强度对转矩测量精度的影响,并得出了最佳激磁磁场强度;在25℃~100℃范围研究了温度变化对传感器输出的影响,其零点温度漂移(25℃)为0.002%F.S/℃;在0~450 N.m范围进行转矩加载,得到了较高的测量灵敏度以及较低的线性度误差、重复度误差及迟滞静态误差;在500 r/min~3 523 r/min范围内,转速最大相对误差为0.60%。试验数据显示,该传感器的精度能够达到1.0%,对于一般工程应用是可行的。  相似文献   

11.
提出了一款应用于RF无线收发芯片的高精度电流偏置电路。综合考虑功耗、面积和失调电压对基准电压的影响,设计了一款符合实际应用的带隙基准电路。并以带隙基准电路作基准电流源的偏置,采用电压电流转换器结构设计了具有高电源电压抑制比(PSRR)的基准电流源。电流镜采用辅助运放的设计方法来提高电流镜的输出阻抗,减小沟道调制效应对输出的基准电流的影响,从而提高输出基准电流的精度。采用0.35μzmCMOS工艺设计芯片版图,版图面积为0.18mm^2。提取寄生参数(PEX)仿真结果表明,该电路在-55℃~+90℃范围内的温度系数为15.5ppm/℃,室温下基准电压为1.2035V;在低频段电流源的电源抑制比为90dB;在外接电阻从1kΩ~400kΩ变化时,输出基准电流误差范围是0.0001μA。  相似文献   

12.
一种新的校正铂电阻传感器非线性的数学方法   总被引:2,自引:0,他引:2  
提出了一种新的校正铂电阻传感器非线性输出的数学方法———函数变换法,在讨论校正传感器非线性基本数学原理基础上导出了线性化条件的解析式。为检验理论的正确性,研究了铂电阻温度计非线性校正的问题,并设计了一个新原理的铂电阻信号调理电路。实验证明:在-200~650℃范围内,测温误差小于0.86℃。从数学原理上讲,这种方法可适用于其它传感器非线性输出的校正。  相似文献   

13.
简介了一种新型绝缘体上硅(SOI)高声压噪声传感器.主要对提升噪声传感器关键指标的感声膜结构的设计过程进行了仿真和计算,利用ANSYS软件对设计尺寸进行了模拟仿真.对设计的噪声传感器进行了频响以及线性度测试:在高声压级135~200 dB动态范围内的线性度小于1%,频率响应为20~100000 Hz;工作温度范围在-40~260℃,传感器的输出为标准电压信号,可组成被动式声测量阵列,用于测量高声压级的噪声信号.  相似文献   

14.
为了使衰减器更好的适应相控阵系统对高集成度波束赋形电路的应用需求。基于55nm CMOS工艺,设计了一款具有低插入损耗、低附加相移特性的六位数控衰减器,该数控衰减器采用桥T和π型衰减结构级联而成,在10-26 GHz频率范围内实现步进为0.5dB、动态范围为0-31.5 dB的信号幅度衰减。为减小插入损耗,NMOS开关采用悬浮栅和悬浮衬底连接方式,同时采用了电容补偿网络和电感补偿以有效降低附加相移。仿真结果表明,在10-26GHz的频带范围内,该数控衰减器的插入损耗小于-7dB,输入/输出回波小于-10dB,附加相移小于±3°,所有衰减态的衰减误差均方根小于0.8dB,芯片的核心电路面积为0.36 mm×0.16 mm。  相似文献   

15.
为了减小热电偶温度传感器的非线性输出误差,介绍了一种分段线性化补偿原理,给出相应的补偿电路和电路分析。实验结果表明:经补偿后在(0-1000)℃范围内,其电压-温度系数约为0.041mV/℃,非线性误差优于0.4%。  相似文献   

16.
MEMS可编程光栅的工作性能很大程度依赖于驱动电路的性能。本文根据MEMS可编程光栅的工作特点及结构参数,提取出光栅的等效电容值,并采用集成高压运放研制出一种新型的MEMS可编程光栅的动态驱动电路。为了避免自激振荡的发生,电路中采用了频率补偿和并联反馈电容的方法,有效提高了电路的稳定性。实际电路经过测试,其动态性能与PSPICE10仿真的结果非常吻合。该动态驱动电路具有高的电压输出范围(0~180V),较高的频率响应(10kHz),大范围容性负载能力(1~1000pF),完全能够满足MEMS可编程光栅动态复杂控制的需要。  相似文献   

17.
在曲率补偿方面。采用一种基于电阻匹配的核心电路结构。采用第二个运放产生一个负温度系数的电流来增强曲率补偿.同时把该负温度系数电流与核心基准源电路产生的正温度系数电流求和得到一个与温度无关的电流给运放提供偏置电流。这将提高运放和基准源的鲁棒性。该电路采用0.35umCMOS工艺实现,典型条件下仿真结果表明,在-40-125℃范围内温度系数为1.03ppm/℃电源电压只需大于1.25V便得到1.205V的稳定输出电压。  相似文献   

18.
一种大动态范围AGC电路的设计与实现   总被引:1,自引:0,他引:1  
耿云辉  冯西安  张路  肖璐 《微处理机》2012,33(3):20-23,28
分析了AGC系统的结构和工作原理,介绍了压控放大器VCA810的性能特点。根据接收机信号调理特点,设计了一种基于VCA810的大动态范围自动增益控制电路,给出了AGC电路仿真结果,并详细介绍了电路的工作原理。实验结果表明,基于VCA810的AGC电路能够达到80dB动态范围的预期目标,并可以灵活调节输出电平值,保证接收机正常工作。  相似文献   

19.
为提高光幕靶测速精度和弹径适应范围,设计了一种光幕靶用自动调节增益的对数放大电路,扩大信号处理电路的测试动态范围。论文分析矩形探测光幕和扇形探测光幕两类典型光幕靶式光幕工作原理,分析弹丸过幕信号幅值与弹丸直径和过幕位置之间的关系。依据对数放大电路特性设计了基于TL441芯片的电压型对数放大电路和LOG112芯片的电流型对数放大电路,对设计的电路进行对数放大特性和动态范围进行测试。试验结果表明,设计的信号处理电路的输入输出信号幅值具有对数特性,其动态范围可达31dB,提高了光幕靶的测试动态范围,满足各口径弹丸的速度测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号