首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为提高钢铁废渣的综合利用率和经济效益、优化环境,采用体积替代法进行钢渣沥青混合料组成设计,通过设计膨胀破坏试验新方法分析钢渣沥青混合料的体积稳定性,基于车辙试验、冻融劈裂试验和低温小梁弯曲试验等,开展不同钢渣掺量下的ARAC-13沥青混合料路用性能研究,并依托广西滨海公路项目对钢渣沥青混合料路面进行经济效益评估。结果表明,ARAC-13沥青混合料的毛体积相对密度和最佳油石比均与钢渣掺量呈正相关性,钢渣掺量的增加会降低混合料的体积稳定性,增大体积膨胀风险。当钢渣100%等体积替代粗集料时,ARAC-13沥青混合料的动稳定度、残留稳定度、冻融劈裂强度比、最大弯拉应变(-10℃)、摆值和构造深度均有不同程度的提高,可显著提升ARAC-13沥青混合料的路用性能,且可节约7.0%左右的材料成本,具有较大的应用前景和经济价值。  相似文献   

2.
吸波材料具有良好的微波传热能力,可用于沥青路面微裂缝自修复。本研究选取了炭黑粉、羰基铁粉和镍锌铁氧体粉3种吸波材料替换部分矿粉制备了SMA-13吸波沥青混合料。通过车辙试验、低温弯曲破坏试验和冻融劈裂试验对比分析了不同吸波沥青混合料的路用性能,并采用半圆弯曲(SCB)试验研究了吸波材料类型、掺量、微波加热时间等因素对吸波沥青混合料表面温度分布和自愈合性能的影响。利用扫描电子显微镜(SEM)和X射线衍射(XRD)分析吸波材料的微观特性。结果表明,随吸波材料掺量从10%增至30%,炭黑粉沥青混合料的动稳定度和冻融劈裂强度比都呈现出逐渐上升趋势,而低温弯曲应变则表现出先增加后减小的特征;羰基铁粉沥青混合料动稳定度和低温弯曲应变均呈现先增加后减小的趋势,而冻融劈裂强度比表现出逐渐减小的特征;镍锌铁氧体粉沥青混合料动稳定度和低温弯曲应变均呈现逐渐减小趋势,而冻融劈裂强度比则与之相反。吸波沥青混合料的表面温度随着吸波材料掺量和微波加热时间的增加而逐渐上升,能够快速达到沥青混合料裂缝面的愈合温度,从而增强沥青混合料的微波自愈合性能。  相似文献   

3.
为研究水长期作用对钢渣集料-沥青界面行为特性影响及相关机理,采用原子力显微镜、X射线衍射仪、扫描电镜以及浸水马歇尔试验、车辙试验等从宏、微观角度进行分析。研究结果表明:水长期侵蚀改变了钢渣表面化学特性,使得钢渣表面粗糙度、表面积及黏附力增大;相比石灰岩沥青混合料,钢渣沥青混合料的残留稳定度和动稳定度具有可成长性,但热闷钢渣和冷弃陈渣膨胀性不同,冷弃陈渣沥青混合料膨胀量大于热闷钢渣沥青混合料,在应用过程中应注意区别对待;冷弃陈渣集料中f-CaO消解速度慢,造成试件后期体积膨胀过大,加剧了试件表面微裂缝产生,致使冷弃陈渣沥青混合料冻融劈裂强度后期较差。  相似文献   

4.
基于关联性的玄武岩纤维沥青胶浆及其混合料性能研究   总被引:3,自引:0,他引:3  
覃潇  申爱琴  郭寅川 《材料导报》2016,30(12):124-128, 152
为全面提升玄武岩纤维沥青混合料性能,研究了纤维类型及玄武岩纤维长度、掺量等因素对沥青胶浆抗裂性能、抗剪性能及流变特性的影响规律;基于纤维胶浆与纤维沥青混合料性能的关联性分析,揭示了玄武岩纤维对沥青混合料性能的细观增强机制。结果表明:玄武岩纤维对沥青胶浆的抗裂性能及流变特性影响显著,其极限拉力和车辙因子分别达到原沥青胶浆的4.5倍及1.08倍;纤维沥青胶浆高温流变特性与其沥青混合料高温稳定性变化规律存在差异,而前者抗裂性能与后者低温抗裂性能关联性较强;玄武岩纤维与沥青胶结料、集料之间形成三维网状结构,有利于抑制裂缝扩展。  相似文献   

5.
为研究掺加玄武岩纤维的大空隙沥青混合料的路用性能,通过析漏试验和马歇尔稳定度试验确定了0% ~0.5% 六种玄武岩纤维掺量的最佳油石比.研究发现,当纤维掺量0.3%、油石比为4.9% 时对应的稳定度值最大,析漏损失最少;掺加玄武岩纤维可以有效的提高大空隙沥青混合料的高温性能、水稳定性、低温抗裂性能和抗压强度,且玄武岩纤维掺量为0.3% 时,各项指标达到最优.  相似文献   

6.
沥青与粗集料的种类与质量是决定沥青路面质量的关键因素,为定量表征不同沥青型号、生产厂家、粗集料性质等对沥青混合料水稳定性的影响,分析相同种类、不同产地沥青混合料水稳定性差异的显著性水平。本研究基于大样本的沥青混合料生产配合比数据库,采用大数据分析方法,定量研究沥青与集料各参数差异对混合料水稳定性的影响程度。首先通过秩和检验法分析了不同沥青与粗集料种类组合之间水稳定性指标的差异性,然后通过广义因素方差分析法研究了不同厂家相同型号沥青混合料水稳定性的差异水平。研究表明,对于各种混合料的水稳定性:玄武岩与石灰岩性能相当;改性沥青优于普通沥青;标准沥青混合料(SUP)优于基质沥青(AC);公称粒径越小水稳定性越好;沥青生产厂家对沥青混合料的水稳定性影响不显著。基于大样本的分析方法适用于沥青混合料水稳定性分析,沥青标号、最大公称粒径及级配对混合料的浸水残留稳定比(MS0)的影响显著性高于对其冻融劈裂强度比(TSR)的影响显著性。  相似文献   

7.
为研究高温重复荷载作用对复合纤维沥青混合料细微观结构的影响,基于加速加载试验,对掺加三种复合纤维和不掺加纤维的沥青混合料车辙变化规律进行研究。采用CT扫描试验,对加速加载前后各组沥青混合料的平均空隙体积和粗集料水平倾角的变化规律进行研究。结果表明:相比于不掺加纤维的沥青混合料,掺加复合纤维后,沥青混合料的抗车辙能力显著提升,其中掺加复合纤维Ⅲ的沥青混合料车辙深度减少了61%;掺加三种复合纤维后,沥青混合料平均空隙体积有所降低,粗集料水平倾角有所增加,在高温重复荷载作用下,复合纤维能够显著减缓沥青混合料平均空隙体积的增加幅度,增幅在13%以内,同时减缓粗集料水平倾角的降低幅度,降低值在6.6°以内;沥青混合料车辙深度与加速加载前平均空隙体积、粗集料倾角变化均存在较好的线性相关性。  相似文献   

8.
为探求RAP掺量对泡沫温拌沥青混合料路用性能的影响,以AC-20型泡沫温拌再生沥青混合料进行配合比设计,成型RAP掺量分别为20%、30%、50%、60%和80%的马歇尔试件。分别利用车辙试验、低温小梁弯曲试验、冻融劈裂试验来评价其高温性能、低温性能和抗水损害性能。试验结果表明:随着RAP掺量的增加,泡沫温拌再生沥青混合料的高温性能不断提高,而其低温性能和抗水损害性能不断变差,当RAP掺量大于50%时,泡沫温拌再生沥青混合料的低温性能和抗水损害性能已不再满足规范要求。综合考虑混合料的路用性能,确定RAP在泡沫温拌再生沥青混合料中的最佳掺量为40%,供生产及控制时参考。  相似文献   

9.
再生剂对老化沥青混合料的改善作用,可使老化沥青混合料的路用性能在一定程度上恢复还原。在进行再生沥青路面混合料设计之前,必须对旧料中沥青的含量及性质、旧料的级配组成及技术指标等进行全面了解,以确定回收的废旧沥青和旧集料性质,为新添集料性质、级配提供掺量依据。本文分析了掺生物沥青的乳化沥青冷再生混合料的概况,对原材料配比和乳化沥青制备情况进行了阐述,接着对不同的生物重油掺量乳化沥青再生混合料力学强度进行实验分析,最后总结了不同生物质重油掺量乳化沥青冷再生混合料路用性能,旨在为提高高速公路的质量以及延长其使用寿命提供保障。  相似文献   

10.
文章针对国产岩沥青的特性,对不同掺量的岩沥青改性沥青混合料和复合改性沥青混合料SMA-10的水稳定性,高温稳定性和低温抗裂性分别进行室内对比试验研究。结果表明,随着岩沥青掺量的增加,岩沥青改性混合料和复合改性沥青混合料的水稳定性,高温稳定性和低温抗裂性等路用性能改善明显,其中,以岩沥青掺量为沥青混合料质量的4%时,综合路用性能改善效果最好。  相似文献   

11.
为研究新沥青标号和用量对回收沥青路面材料(RAP)再生沥青混合料性能的影响,分别选取70#和90#道路石油沥青,以最佳新沥青掺量(OAC)为基准,分别制备OAC、OAC+0.5%和OAC-0.5%,RAP掺量分别为0%、20%和40%的再生沥青混合料.通过沥青混合料动态模量试验、疲劳试验、低温圆盘拉伸试验和冻融循环试验分析了不同沥青混合料的性能;接着,为更好地区分不同再生沥青混合料的抗裂性能,萃取得到不同再生沥青混合料中的沥青,对沥青进行高温DSR频率扫描试验,应用G-R常数分析不同沥青的抗裂性能.结果表明:当新加沥青较软、掺量较高,而RAP掺量较低时,再生沥青混合料的抗疲劳开裂能力及抗低温抗裂能力更强;反之,当新沥青较硬,RAP掺量较高时,再生沥青混合料的硬度较高,有较好的抗车辙能力.当新加沥青为70#沥青,掺量为OAC-0.5%、40%RAP时,再生沥青混合料低温性能不满足要求.水稳定性分析表明,一次冻融循环用于评价再生沥青混合料的水稳定性具有一定局限性;两次冻融循环试验表明,再生沥青混合料的水稳定性比新沥青混合料差.沥青G-R常数分析表明,低标号沥青的RAP掺量较高时,萃取的沥青更接近开裂标线,更易发生开裂行为.  相似文献   

12.
在SBR改性乳化沥青与集料中以不同掺量及掺加方式添加两种交联程度不同的水性环氧树脂(W-1、W-2),并引入表面能理论进行SBR改性乳化沥青与集料黏附性能研究.结果表明:水性环氧树脂(WER)能够通过增加胶结料表面酸性力和集料表面碱性力进而改善二者的黏附性能,随着WER掺量增加,混合料水稳定性评价指标(ER)呈先增大后...  相似文献   

13.
本文对岩沥青改性沥青的各项性能进行了试验研究,经分析得出,其各项性能优于基质沥青;继而又对岩沥青改性沥青混合料进行了试验研究,研究表明:掺加岩沥青后水稳定性、高温性能得到提高,低温性能有所下降。综合分析得出:掺加10%岩沥青的混合料各项性能优异,此掺量为最佳。  相似文献   

14.
傅珍  黄振  马峰 《材料导报》2016,30(2):118-122
为研究玄武岩纤维对老化沥青混合料路用性能的影响,通过车辙试验、低温弯曲小梁试验、浸水马歇尔试验和冻融劈裂试验研究了玄武岩纤维对沥青混合料抗老化性能的作用。试验结果表明:虽然玄武岩纤维沥青混合料的动稳定度随老化时间增加,但相对于普通沥青混合料而言,其增加的幅度减缓,提出采用相对变形率作为老化性能评价指标;玄武岩纤维延缓了沥青混合料老化性能的衰变,使得老化后的混合料低温抗裂性改善;经短期老化和长期老化后玄武岩纤维沥青混合料水稳定性能均优于普通沥青混合料,且玄武岩纤维显著降低了长期老化试件的未冻融劈裂强度,因此在应用中应适当增加碾压次数。  相似文献   

15.
为了确定碳纤维导电沥青混合料的合理碳纤维掺量,选用短切聚丙烯腈(PAN)基碳纤维作为导电相材料,通过大量室内试验分析了碳纤维掺量对导电沥青混合料AC-13C的马歇尔性能和导电性能的影响,并验证了其路用性能。结果显示,相同油石比下,随着碳纤维掺量的增加,导电沥青混合料的毛体积密度、沥青饱和度和马歇尔稳定度呈先增后减的变化趋势,空隙率和矿料间隙率呈先减后增的变化关系,而流值一直增大。通过对碳纤维掺量不同范围的沥青混合料分别采用AC、调整和SMA的技术标准,确定了合理的最佳油石比,且最佳油石比与碳纤维掺量之间呈良好的半对数相关关系。同时,在最佳油石比下,导电沥青混合料电阻率的对数与碳纤维掺量之间呈良好的幂函数关系,且0.1%碳纤维掺量的沥青混合料的各项路用性能指标均达到气候条件要求高的改性沥青混合料和SMA的技术要求。因此,适宜的碳纤维掺量对导电沥青混合料可起到优良的增强作用,并形成稳定的导电网络,综合各项性能和导电发热的技术要求,建议碳纤维的适宜掺量取0.1%。  相似文献   

16.
为探究硅藻土和玄武岩纤维复合改性对沥青性能的影响,通过动态剪切流变(DSR)试验,以硅藻土和玄武岩纤维掺量为自变量,深入分析玄武岩纤维和硅藻土复合改性对沥青高温和疲劳性能的影响;并根据CAM模型拟合分析了不同复合掺量硅藻土和玄武岩纤维对沥青流变特性的作用;通过双因素方差分析方法,研究玄武岩纤维和硅藻土之间的交互作用,并分析玄武岩纤维、硅藻土以及两者之间的交互作用对复合改性沥青各项性能影响的显著性。研究结果表明:复掺硅藻土和玄武岩纤维可以显著改善沥青的高温性能,降低沥青材料的温度敏感性,但玄武岩纤维掺量过多时,会对沥青性能产生不利影响。  相似文献   

17.
本文采用等体积代换法设计钢渣沥青混凝土配合比,应用间接拉伸疲劳试验对比了钢渣沥青混凝土与普通沥青混凝土的疲劳性能,通过数字图像相关(DIC)方法研究了两种沥青混凝土在疲劳过程中的应变变形积累。试验结果表明,采用钢渣代替天然集料后,显著提高了沥青混凝土的抗变形能力和抗疲劳性能,以细钢渣代替天然细集料的性能提升效果最为显著。  相似文献   

18.
为了评价高黏改性剂对沥青性能的影响,采用高速剪切法制备了苯乙烯-丁二烯嵌段共聚物(SBS)改性沥青、废橡胶粉改性沥青和两种SBS/橡胶粉复合改性高黏沥青。通过三大指标试验、黏度试验、高温车辙试验和低温小梁弯曲试验,研究了高黏沥青的高低温性能、感温性能及沥青混合料路用性能。结果表明:4种改性沥青的高低温性能随各自改性剂掺量的增加逐渐提高,掺加10%北美岩沥青或2.5%多聚磷酸(PPA)的高黏沥青感温性能更稳定,较大幅度提升了黏度值,高温性能改善明显;掺加2.5%PPA的高黏沥青及其混合料能够更好地抵抗高温条件下的性能衰减,保证了使用效果,更适用于温度较高地区;掺加10%北美岩沥青的高黏沥青及其混合料在低温条件下性能良好,推荐在低温地区使用。  相似文献   

19.
沥青路面施工过程中,粗集料压碎后沥青混合料的性能发生了重大改变,严重影响了沥青混合料性能和使用品质。提出了粗集料压碎后沥青混合料性能的测试方法;通过试验测试了粗集料被压碎前、后沥青混合料高温抗变形性能和水稳定性的差异性。研究结论为沥青路面施工质量的控制提供了有力的依据。  相似文献   

20.
王振军  王宇  蒋玮  肖晶晶 《功能材料》2011,42(5):827-830
为有效减轻车辙深度,掺加多孔玄武岩集料和粉煤灰漂珠,采用"三步"成型工艺制备沥青基复合材料,测试其路用性能,利用光照法研究其隔热功能,并借助扫描电镜(SEM)分析沥青胶浆与集料界面微观结构.结果表明,掺加多孔集料后复合材料路用性能满足相关要求;随粉煤灰漂珠和多孔玄武岩集料体积分数增加,抗压强度、动稳定度和浸水残留稳定度...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号