首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
采用机械活化的3Ti/Si/2C/0.2Al单质粉体为原料,在空气中发生自燃反应,成功地合成了Ti3SiC2基材料. 采用XRD、SEM和EDS等手段,分析了合成产物的相组成和微观结构特征. 结果表明,机械合金化3Ti/Si/2C/0.2Al单质混合粉体,不仅细化了粉体颗粒,而且产生严重的晶格畸变,从而明显提高了粉体的反应活性. 把机械活化的粉体暴露在空气中,会发生剧烈的燃烧反应,并引发自蔓延反应,合成Ti3SiC2,冷却后变成多孔块体产物. 燃烧产物由Ti3SiC2、TiC和微量氧化物组成. 产物中Ti3SiC2含量约为83wt%. 产物表层比较致密和均匀,而内部则粗糙且多孔. 产物的表面是以Al2O3和TiO2为主相的氧化膜,氧化物颗粒大小约为2~4μm. 氧化膜厚度约为5~10μm,比较致密. 内部为Ti3SiC2和TiC材料,板条状Ti3SiC2晶粒长约20~40μm,宽约2~4μm,发育完善. 粒状TiC晶粒大小约为3μm.  相似文献   

2.
Ti3SiC2-64vol%SiC复相陶瓷高温氧化机理研究   总被引:1,自引:0,他引:1  
采用热等静压原位合成了高致密的Ti3SiC2-64vol%SiC复相陶瓷. 通过热重实验研究其在1100~1450℃中空气气氛的高温氧化行为和机理. 研究显示,复相陶瓷的等温动力学曲线遵循抛物线型氧化或抛物线型直线型氧化规律. SiC (64vol%)的引入显著提高了Ti3SiC2-SiC材料的抗氧化能力. XRD及SEM-EDS分析显示,氧化膜由外层金红石型TiO2和非晶态SiO2组成,过渡层为TiO2与SiO2混合物. 高温下(1400℃),非晶态SiO2的形成改变了TiO2膜的生长形态,形成致密TiO2膜,有效阻碍了氧的扩散. 长时间氧化其抛物线速率常数比在1200℃下氧化低一个数量级. 材料在1400℃下的抗氧化性能明显优于在1200℃下的抗氧化性能.  相似文献   

3.
以沉淀法制备的纳米TiO2/Cr2O3复合粉体为原料,采用氨解法在800℃、氮化8h制备了纳米Ti0.8Cr0.2OxNy粉体。对纳米TiO2/Cr2O3复合粉体和合成的氧氮化物粉体用俄歇电子能谱(AES)、氮吸附比表面积(BET)、X射线衍射(XRD)、透射电子显微镜(TEM)、电子探针显微分析(EPMA)等方法进行了表征。结果表明:沉淀法可以制备出组成均匀的纳米TiO2/Cr2O3复合粉体,该复合粉体在800℃氮化8h可得到粒度为20~30nm的纯立方相Ti0.8Cr0.2OxNy纳米粉体,其比表面积达4674m2/g。  相似文献   

4.
以Al4C3、Ti和石墨混合粉体为原料, 采用放电等离子技术原位反应制备了TiC/Ti2AlC两相复合材料和TiC/Ti2AlC/TixAly三相复合材料. 利用XRD、SEM、TEM研究了复合材料的相组成和微观结构, HRTEM的观察结果显示复合材料的相界面清洁干净, 无非晶相存在. 同时研究了TiC/Ti2AlC/TixAly三相复合材料的原位反应烧结过程, 并对复合材料的导电行为进行了表征. 在室温时TiC/Ti2AlC材料的电导率大于TiC/Ti2AlC/TixAly三相复合材料,其中TiC/40vol%Ti2AlC的电导率最高达到8.83×105S/m. TiC/Ti2AlC两相复合材料和TiC/Ti2AlC/TixAly三相复合材料的电导率均随温度的升高而下降, 呈现电导的金属性特征, 同时电导率随温度变化关系符合Arrhenius理论.  相似文献   

5.
Ca0.3(Li1/2Sm1/2)0.7TiO3微波介质陶瓷的低温烧结研究   总被引:2,自引:1,他引:1  
采用传统陶瓷制备工艺, 制备了掺杂Na2O-CaO-B2O3(NCB)氧化物的Ca0.3(Li1/2Sm1/2)0.7TiO3(CLST)陶瓷, 研究了NCB掺杂量与晶相组成、显微结构、烧结性能及微波介电性能的关系. 研究结果表明: 复合氧化物NCB掺杂量在1wt%~15wt%范围内没有杂相生成, 晶相仍呈斜方钙钛矿结构. 随着NCB添加量的增加, 陶瓷致密化温度和饱和体积密度降低, 介电常数εr、无载品质因数与谐振频率乘积Qf值也呈下降趋势, 频率温度系数τf向正方向增大. NCB氧化物掺杂能有效地将CLST陶瓷的烧结温度由1300℃降低至900℃. 添加12.5wt% NCB的CLST陶瓷在低温900℃烧结5h仍具有良好的微波介电性能: εr=73.7, Qf=1583GHz, τf=140.1×10-6/℃, 满足高介多层微波器件的设计要求.  相似文献   

6.
采用固相反应法制备了 (Mg0.93Ca0.05Zn0.02)(Ti1-xAlx)O3介质陶瓷.研究了Zn-Al共掺杂对0.95MgTiO3-0.05CaTiO3(95MCT)陶瓷介电性能的影响.结果表明:Zn-Al共掺杂的95MCT陶瓷的主晶相为MgTiO3和CaTiO3两相结构,Zn-Al共掺杂可以抑制中间相MgTi2O5的产生,同时,有第二相CaAl2O4出现;Zn-Al共掺杂能有效地降低95MCT陶瓷的烧结温度至1300℃,改善介电性能,并对介电常数温度系数具有调节作用.当 Zn2+掺杂量为0.02mol、Al3+掺杂量为0.02mol时, 在1300℃烧结2.5h获得最佳性能:εr =20.35, tgδ=2.0×106, αc=1.78×106.  相似文献   

7.
用高纯Al粉体和Y2O3粉体(Al-Y2O3粉体)为原料采用固相反应法制备了YAG陶瓷. Al-Y2O3粉体高能经过球磨, 煅烧生成YAG粉体, 再真空烧结制备高致密YAG陶瓷. 采用DTA-TG对球磨Al-Y2O3粉体进行分析, 采用XRD、SEM对球磨的Al-Y2O3粉体、YAG粉体及YAG陶瓷进行了表征. 实验表明: Al-Y2O3粉体在~569℃时, Al粉强烈氧化, 并与Y2O3粉反应, 600℃煅烧出现YAM相, 随煅烧温度升高出现YAP相, 1200℃煅烧生成YAG粉体. 成型YAG素坯在1750℃保温2h真空烧结出YAG相陶瓷, YAG陶瓷相对密度可达98.6%, 晶粒生长均匀, 晶粒尺寸为810μm.  相似文献   

8.
报道了一种用于氧化物电子陶瓷微波烧结的保温体材料MgAl2O4-LaCrO3的研究和应用情况.该保温材料解决了许多氧化物电子陶瓷在微波烧结过程中易发生的热应力开裂问题并同时具有使样品均匀烧结成瓷的作用.现已成功地应用该保温体对CoMnNiO系NTC热敏材料;BaTiO3系PTC材料,ZnO掺杂系电压敏材料,LaCrO3基复合材料等氧化物电子陶瓷进行了微波烧结,烧结样品无热应力开裂并成瓷均匀致密.适用的氧化物电子陶瓷微波烧结温度区间最高可至1600℃.  相似文献   

9.
热压烧结得到高纯致密的Ti2AlC块体.将Ti2AlC在浓的和稀的HNO3、HCl及H2SO4溶液中浸泡,得到试样的腐蚀速率及腐蚀类型.电化学方法测量试样在三种稀溶液中的腐蚀电位和腐蚀电流及动电位极化曲线.浸泡腐蚀实验发现,Ti2AlC在酸中的腐蚀类型由点腐蚀发展到晶间腐蚀最后为剥蚀,腐蚀速率随着浸泡时间的延长而不断增大.其中在浓HNO3中腐蚀速率最大,稀HCl的腐蚀速率最小.除H2SO4外,Ti2AlC在浓酸溶液中的腐蚀率均大于其稀溶液.电化学实验表明,在稀HNO3中自腐蚀电流最小,自腐蚀电位最大.稀H2SO4自腐蚀电流最大.在三种稀溶液中均出现钝化,其中稀H2SO4维钝区间最宽.  相似文献   

10.
原位反应结合多孔Si3N4陶瓷的制备及其介电性能   总被引:2,自引:0,他引:2  
以氮化硅(Si3N4)和氧化铝(Al2O3)为起始原料, 利用原位反应结合技术制备Si3N4多孔陶瓷. 研究烧结温度和保温时间对Si3N4多孔陶瓷的微观结构、力学性能以及介电性能的影响. 结果表明: 烧结温度在1350℃以下, 保温时间<4h时, 随着烧结温度的升高, 保温时间的延长, 样品的强度和介电常数增大; 但条件超出这个范围, 结果刚好相反; 物相分析表明多孔陶瓷主要由Si3N4和Al2O3以及Si3N4氧化生成的SiO2(方石英)组成. 所制备的多孔Si3N4陶瓷的气孔率范围为25.34%~48.86%, 抗弯强度为34.77~127.85MPa, 介电常数为3.0~4.6, 介电损耗约为0.002.  相似文献   

11.
锆钛复合氧化物的制备及用作Pt三效催化剂载体的性能   总被引:1,自引:0,他引:1  
用共沉淀法制备了Zr0.5Ti0.5O2复合氧化物, 考察了沉淀时的pH值、温度及焙烧温度对样品织构性能的影响. 分别用BET、XRD、NH3-TPD 对样品的织构、结构性能和表面酸性进行了表征. 将经过不同温度焙烧后的样品作为载体制备成Pt/Zr0.5Ti0.5O2催化剂, 考察了催化剂对C3H8、CO、NO 的催化性能, 并与传统的以La-Al2O3为载体的Pt/La-Al2O3汽车尾气三效催化剂进行了比较. 结果表明: 当沉淀时的pH=11、温度为25℃、焙烧温度为550℃时, 所制得的样品具有较好的织构性能(比表面积为195m2· -1、孔容为0.28mL·g -1)、较强的表面酸性和较宽的酸度分布; 用该样品制备的汽车尾气三效催化剂与传统的以La-Al2O3作载体的Pt/La-Al2O3催化剂相比, 具有更好的HC和CO催化性能和优异的NO转化性能.  相似文献   

12.
燃烧合成Ti3AlC2粉体的机理研究   总被引:6,自引:0,他引:6  
利用淬火实验并结合XRD、SEM研究了燃烧合成Ti3AlC2粉体的机理.实验结果表明,燃烧合成Ti3AlC2粉体的机理是溶解再析出机制.即先生成的TiC晶核重新溶解到Ti-Al熔体中,同时三元碳化物开始析出并发育成层状结构.反应可以分为三个阶段:A.预热阶段;B.初始反应阶段;C.溶解析出阶段.  相似文献   

13.
50Ti/HA生物材料的组织结构与体外生物活性   总被引:6,自引:0,他引:6  
通过热压烧结的方法制备出50Ti/HA生物复合材料,对其组织结构及其在模拟体液中的生物活性进行了研究.XRD结果表明,在1200℃烧结时,原始材料中的Ti与HA之间发生了复杂的化学反应,反应产物为TiO、CaTiO、CaO以及一种类TiP相.将复合材料浸入模拟体液一天后,其表面就形成一层连续的磷灰石膜,随着浸泡时间的延长,磷灰石膜逐渐增厚.这种膜沿[001]方向具有明显的择优取向,其形成主要与复合材料中生成的TiO有关.  相似文献   

14.
大面积3D有序介孔二氧化钛薄膜光子晶体制备与性能研究   总被引:3,自引:0,他引:3  
介绍了大面积有序反蛋白石结构介孔二氧化钛薄膜光子晶体制备与性能研究的进展.为了保证二氧化钛骨架结构的稳定性和有序度,从而使氧化钛介孔薄膜达到大面积结构均匀,在介孔薄膜制备过程中采用了几种新的工艺方法,其中包括二氧化硅晶体模板的应用和用NaOH溶液代替常用的HF溶液作为模板去除剂.制备的介孔二氧化钛薄膜光子晶体的面积达到厘米尺寸,二氧化钛骨架的填充率达到17.4%,薄膜制备过程中的收缩率<3%.薄膜透射光谱研究结果表明,这种大面积3D有序的反蛋白石结构介孔二氧化钛薄膜具有非常优良的光子带隙特性,有望成为一类具有非常好的发展和应用前景的光子晶体材料.  相似文献   

15.
放电等离子超快速烧结氧化物陶瓷   总被引:21,自引:6,他引:15  
本文介绍一种氧化物陶瓷超快速烧结的新方法.用放电等离子烧结的方法对Al2O3、Y-TZP、YAG、Al2O3-ZrO22和莫来石等各种氧化物粉体进行了超快速烧结,采用2~3min升温到1200℃以上,不保温或保温2min,然后迅即在3min之内冷却至600℃以下的烧结温度,得到了直径为20mm的晶粒细、致密度高、力学性能好的烧结样品.对用化学共沉淀法自制的20mol%Al2O3-ZrO2(3Y)纳米粉体分别在1170~1500℃之间的7个不同温度下进行放电等离子烧结,升温速率为200℃/min,保温2min后;迅即在3min之内强制冷却至600℃以下.1350℃以上烧结得到的样品密度已接近理论密度,1250℃以上烧结得到的样品的断裂韧性K1c都大于6MPa·m1/2放电等离子超快速反应烧结所得到的ZrO2-莫来石复相陶瓷致密度高、力学性能好,ZrO2晶粒在莫来石基体中分布均匀,XRD结果表明,在1530℃烧结的样品中,已找不到ZrsiO4痕迹,说明在如此快速的烧结条件下;反应烧结已经可以完成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号