首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
以修复土壤重金属污染的植物龙葵为原料制备生物炭,利用龙葵生物炭吸附去除含有重金属Cd~(2+)的污水,对龙葵生物炭颗粒参数以及其吸附Cd~(2+)的条件进行分析。结果表明:用氢氧化钠去脂、稀硝酸活化、550℃煅烧1h制备的龙葵生物炭颗粒较小,分布较均匀。龙葵生物炭吸附Cd~(2+)的最佳条件为:pH=6、生物炭用量0.1g、溶液体积为40mL、吸附平衡时间180min。龙葵生物炭对Cd~(2+)的吸附过程符合Freundlich和Langmuir等温吸附模型。  相似文献   

2.
以银杏叶为原料,经化学共沉淀法制备磁性生物炭(MBC),用XRD、SEM、BET和FT-IR等对其进行表征。将MBC应用于溶液中罗丹明B(RB)的吸附去除,考察pH值、吸附时间、溶液初始浓度和MBC用量等对吸附效率的影响。结果表明,MBC是一种很好的吸附剂,负载的铁以Fe_3O_4的形式散布在生物炭表面;在初始RB浓度为100 mg/L,MBC投加量为0.2 g,吸附120 min后达到平衡,溶液中RB的去除率达到99.34%。吸附过程符合准一级动力学模型(R~2=0.9914),颗粒内扩散方程拟合结果表明MBC对RB吸附受到液膜扩散和颗粒内扩散共同主导。吸附等温线拟合发现Langmuir-Freundlich (R~2=0.9934)模型能很好地描述RB吸附行为。MBC是一种去除水体中RB的高效吸附剂。  相似文献   

3.
以湿地植物美人蕉(MBC)、再力花(ZBC)和旱伞草(HBC)为原材料,采用热裂解法于300、 500、 700℃下制备生物炭,应用全自动元素分析仪、扫描电子显微镜、红外光谱等手段表征分析生物炭理化性质,采用静态吸附法系统研究生物炭对镉的吸附特性。结果表明:制备温度对生物质炭的理化性质、表面形貌和矿物成分有很大影响;中温(500℃)、高温(700℃)裂解生物炭对镉的吸附性能优于低温(300℃)裂解生物炭的,500℃裂解生物炭吸附性能最好,对Cd2+吸附容量均值可达96.00 mg·g-1,极值可达108.28 mg·g-1,且吸附容量从大到小为ZBC、 MBC、 HBC; 500℃裂解湿地植物基生物炭对Cd2+的吸附平衡时间为30 min左右,适宜的投加量和较大的溶液pH、离子初始质量浓度、反应温度有利于生物炭对Cd2+的吸附,对Cd2+吸附过程更符合Freundlich等温吸附模型和拟二级动力学模型,且属于优惠吸附;裂解温度的升高可以促进生物炭芳香化,改...  相似文献   

4.
为探讨小麦、玉米、水稻、花生壳和稻壳制备生物炭的差异,本文对这些植物纤维在不同预成型压力下制备的生物质炭的结构和性能进行了测定和分析,并研究了其对铅离子(Pb^(2+))的吸附性。结果表明:玉米、小麦和水稻三种秸秆生物质炭对溶液中Pb^(2+)的吸附性能较好,且在不同初始浓度下对Pb^(2+)的吸附符合Langmuir等温吸附模型,吸附量分别为141.310、121.226和122.753mg·g^(-1)。而花生壳和稻壳生物炭对Pb^(2+)的吸附性能较差,吸附量分别为62.914和51.037mg·g^(-1)。玉米秸秆生物质炭的-OH、-C-H、C=C等表面官能团较多,可通过表面官能团的络合作用吸附溶液中的Pb^(2+)。小麦和水稻秸秆制备生物炭由于含有较高的碳酸盐、磷酸等无机矿物形成化学沉淀。不同初始压力下制备生物质炭对溶液中Pb^(2+)的吸附影响较小。  相似文献   

5.
为去除水体中Cr(III)的污染, 本研究利用席夫碱反应原理制备了2-羟基-1-萘甲醛功能化SBA-15吸附剂(Q-SBA-15)。通过不同测试手段对所制备样品的形貌、孔道结构、元素组成和表面化学状态进行了系统表征。结果表明, SBA-15经2-羟基-1-萘甲醛修饰后, 其比表面积和孔径明显减小, 但表面形貌和晶体结构没有明显变化。为研究Q-SBA-15对Cr(III)的吸附性能, 详细分析了溶液pH和离子强度的影响, 以及吸附动力学、吸附等温线、吸附热力学和再生性能。结果表明, Q-SBA-15对Cr(III)吸附过程遵循准二级吸附动力学模型和Langmuir模型。当吸附温度为 40 ℃、pH为6、吸附时间为120 min时, Q-SBA-15对Cr(III)的吸附容量最大, 达到102.3 mg/g。Q-SBA-15对Cr(III)的吸附作用主要依靠其表面官能团与Cr(III)的配位螯合作用, 且为自发吸热过程。再生实验表明Q-SBA-15具有良好的重复使用性。该Q-SBA-15吸附剂在去除Cr(III)方面具有潜在的应用价值。  相似文献   

6.
为控制环境污染领域提供新材料,分别在300、400和500℃条件下制备了巴旦木壳(BC)和干炒巴旦木壳(BCF)生物炭,并用不同浓度的HCl和NaOH对生物炭进行了改性。用国标法表征了生物炭的真密度、灰分、钙镁含量、pH值、焦糖脱色率、亚甲基蓝吸附量、碘吸附值及比表面积等基本性质,并对溶液中Pb2+和Zn2+的吸附特性进行了研究。实验结果显示,随着炭化温度的升高,两种生物炭的产率降低,灰分、钙镁含量、真密度、比表面积、孔体积、碘吸附值和pH值增加;BC500和BCF500的比表面积分别达到了199.97和295.44m2/g。BCF的灰分明显高于BC;酸碱及其浓度对不同参数产生的影响不一致。400℃碳化的两种生物炭的亚甲基蓝吸附值较高,酸碱改性后吸附值均增高;高温热解有利于制备碘吸附值高的生物炭,碱改性能提高碘吸附值,BC500和BCF500及其碱改性产物的碘吸附值达到330mg/g以上;两种生物炭及其改性产物的焦糖脱色率变化没有明显规律;高浓度酸碱改性显著降低了高温制备的BC和BCF的Pb吸附量;酸改性降低了、碱改性提高了两种生物炭的Zn吸附量。总之,两种巴旦木壳生物炭对不同物质的吸附特性不同,建议根据污染物的种类选择不同的生物炭制备工艺和改性剂。  相似文献   

7.
重金属铬的污染会严重威胁到土壤和水体的环境安全, 而水中的六价铬化合物则具有很强的迁移性、富集性和氧化性等特性, 更具有危害性且难以处理。吸附法是一种能简单、高效地处理含重金属污水的处理技术。在磁力搅拌条件下采用花生壳生物炭分别与高岭土和膨润土混合制备而成两种生物炭-黏土材料, 并分别对这两种生物炭-黏土的表面特性进行表征。结果发现所选用的两种黏土均能不规则地负载在生物炭的表面。吸附实验结果显示, 生物炭-高岭土(Biochar@Kaolin)吸附铬(VI)的能力显著高于生物炭-膨润土(Biochar@Bentonite)。从吸附动力学方程的分析可以看出, 合成的两种生物炭负载黏土吸附水中的铬(VI)均符合伪二级动力学方程。从吸附等温线分析中可以得到, Biochar@Bentonite吸附铬(VI)的过程符合Langmuir模型, 而Biochar@Kaolin吸附铬(VI)的过程符合Freundlich模型。研究结果显示, 采用生物炭-黏土的复合材料修复环境中的重金属污染具有广阔的应用前景。  相似文献   

8.
本研究运用NaOH浸渍法和合成硅源方法,采用NaOH和TMT-102(一种商用重金属捕捉剂)改性浒苔生物炭,研究两种改性产物NaOH-BC和TMT-BC的Cd2+吸附效果.采用扫描电子显微镜(SEM)、傅里叶红外光谱仪(FTIR)、Brunauer-Emmett-Teller法(BET)测定比表面积等手段进行表征,探究了吸附时间、初始Cd2+浓度、吸附剂投加量、初始溶液pH值、吸附温度、共存离子等因素对改性生物炭的Cd2+吸附影响.结果显示未改性的生物炭表面光滑,NaOH-BC表面未见有明显的腐蚀痕迹,TMT-BC表面呈密集雪花状,且吸附后的两种改性生物炭比表面积相对于吸附前减小;改性和吸附处理后,生物炭的衍射峰位置发生了变化;改性浒苔生物炭的吸附属于均匀的单层化学吸附;在吸附300 min,初始Cd2+浓度为15 mg·L-1,初始溶液pH值为6、吸附剂用量为0.8 g·L-1的条件下,上述两种改性生物炭对Cd2+的最大吸附量分别为1.21和7.23 mg·g-1.TMT-102负载改性法可有效提高浒苔生物炭吸附Cd2+效果.  相似文献   

9.
针对水体钒污染现象,以经磷酸浸渍的马缨丹为原料制备多孔生物炭后负载聚乙烯亚胺(PEI),得到PEI功能化多孔生物炭(PBC)。采用BET、扫描电镜(SEM)、EDS能谱和红外光谱(FT-IR)进行表征,并探究其对水中钒离子[V(Ⅴ)]的吸附。结果表明:PBC具有丰富的孔隙结构及表面官能团,比表面积和孔容分别为原始炭(LBC)的5.87倍和12.33倍;PBC和LBC对V(Ⅴ)的饱和吸附量分别为147.47mg/g和4.98mg/g; PBC对V(Ⅴ)的吸附行为符合Langmuir模型和拟二级动力学模型,可选择性高效吸附水中V(Ⅴ)并循环再生利用。PBC对V(Ⅴ)的吸附机理以静电作用、多孔吸附、络合及还原作用为主。  相似文献   

10.
生物炭制备及其在水污染控制中的应用   总被引:1,自引:0,他引:1  
生物炭孔隙发达、比表面积大、表面官能团丰富、具有"碳中性"特点,对很多物质表现出极强的吸附作用。近年来,生物炭的制备及应用备受关注。概述了生物炭的制备方法、性质及其影响因素,讨论了生物炭及其炭基复合材料的制备及应用研究,简述了生物炭对水体中有机污染物和重金属离子的去除效果和机理。虽然生物炭及其复合材料具有诸多优点,但生物炭的工程放大研究及技术经济可行性的系统评价方面的研究较少,仍是今后研究的重点。  相似文献   

11.
Mg-Al和Mg-Fe型双金属氧化物对亚砷酸根吸附性能的对比   总被引:1,自引:0,他引:1  
以水滑石和类水滑石为前体, 通过煅烧法制备了两种双金属氧化物, 对比研究了它们对溶液中亚砷酸根的吸附作用. 在室温条件下, Mg-Al-LDO和Mg-Fe-LDO对As(III)的吸附容量分别为83.2和87.45mg/g. 从整个时间系列来看, Mg-Fe-LDO对As(III)吸附能力明显要高于Mg-Al-LDO, 尤其是在吸附反应初期. 观测到Mg-Al-LDO在吸附As(III)过程中溶液pH值上升, 这与化学反应方程式一致; 而Mg-Fe-LDO在吸附As(III)过程中pH值先升后降, 可以解释为Fe(III)与As(III) 的反应所致. 将反应介质加热能有效抑制溶解CO2的干扰, 并大幅提高LDO对As(III)的吸附容量.  相似文献   

12.
温俊峰  刘侠  马向荣  党睿 《功能材料》2021,52(4):4184-4191
采用水热法原位改性沙柳生物炭制备磁性多孔炭复合材料,利用SEM、XRD、FT-IR、XPS和BET分别对多孔炭的形貌、结构表征,并研究磁性多孔炭吸附去除废水中亚甲基蓝性能。系列表征分析结果表明磁性复合材料表面疏松多孔,比表面积为63.01 m2/g,含有-COOH、-OH等丰富的官能团。在亚甲基蓝初始质量浓度为50 mg/L、初始pH值为11,投加量为2 g/L、25℃吸附120 min时,亚甲基蓝的吸附率可达88.52%,最大吸附量为218.08 mg/g;吸附过程与Langmuir吸附等温模型拟合较好,符合准二级吸附动力学模型。吸附以化学吸附为主,吸附稳定,无二次污染,吸附剂廉价易得,便于分离,是理想的亚甲蓝废水处理试剂。  相似文献   

13.
黑藻对含重金属废水中锌离子的吸附性能   总被引:1,自引:0,他引:1  
黑藻能吸附重金属废水中的Zn2+,但对其的报道鲜见.研究了生物吸附剂黑藻对废水中Zn2+的吸附去除性能,考察了溶液pH值、Zn2+初始浓度、黑藻加入量和吸附时间对吸附效果的影响.同时通过EDX分析和等温吸附模型对黑藻吸附Zn2+的机理进行了研究.结果表明:在溶液pH值为6.0、黑藻加入量为2 g/L,吸附时间为30 min,Zn2+质量浓度为20 mg/L的条件下,黑藻对Zn2+的吸附率为85%,并且发现黑藻对Zn2+的吸附是阳离子交换过程,吸附符合Langmuir,Freuncllich和D-R等温吸附模型.  相似文献   

14.
选择四种生物质为原料,经300℃热裂解制成生物质烘焙炭,研究生物烘焙炭理化特性对亚甲基蓝的吸附特性以及动力学、热力学特性,分析了pH值、吸附时间、溶液初始质量浓度、生物质投加量对吸附效果的影响。同时对吸附动力学以及吸附机制进行研究。结果表明:生物质烘焙炭对亚甲基蓝的吸附约60 min即达平衡;适宜pH值为8~12,平衡吸附量随着初始浓度的增加而增加。四种生物质烘焙炭对亚甲基蓝的等温吸附均可用Langmuir方程和Frcundlich方程拟合,木粉烘焙炭属于单分子层吸附,而壳类生物质烘焙炭以多分子层吸附为主,吸附过程符合准二级动力学方程,即以化学吸附为主,吸附过程由膜扩散和颗粒内扩散共同控制,颗粒内扩散为主要吸附速率控制步骤,吸附过程为吸热反应,高温有利于吸附体系的自发进行。最终得到四种原料烘焙炭吸附能力的强弱顺序为:核桃壳烘焙炭木粉烘焙炭椰子壳烘焙炭橡胶籽壳烘焙炭。  相似文献   

15.
针对电镀、冶金、印染等行业产生的含铬废水所导致的环境污染难题,以城市污泥热解获得的污泥基生物炭(SB)为载体,制备了污泥基生物炭负载纳米零价铁(nZVI-SB)材料用于去除水中的Cr(Ⅵ),探究了铁炭质量比、初始pH值、投加量、温度等因素对去除Cr(Ⅵ)的影响。通过SEM-EDS、XRD和XPS等手段对n ZVI-SB去除Cr(Ⅵ)的机制进行分析。结果表明:n ZVI-SB对Cr(Ⅵ)废水具有较好的去除能力。在投加量0.5 g/L、初始pH=2、温度40℃条件下,Fe与SB质量比为1∶1的nZVI-SB(1∶1)对Cr(Ⅵ)吸附量最大为150.60 mg/g。Cr(Ⅵ)去除过程可通过Langmuir吸附等温式与准二级动力学方程进行拟合。nZVI-SB对Cr(Ⅵ)去除机制主要包括吸附、还原和共沉淀。本文表明污泥基生物炭与纳米零价铁可以协同发挥除Cr(Ⅵ)作用。  相似文献   

16.
为了探索市政生活污水处理厂剩余活性污泥资源化方式,以市政污泥为原料,采用热解法制备污泥基生物炭(SBC),探究SBC最佳制备条件以及对多环芳烃萘的吸附影响因素。结果表明:SBC的最佳制备条件为污泥粒径0.25mm,升温速率2.5℃/min,热解温度800℃,停留时间1h,在该条件下市政污泥的产炭率、产油率和产气率分别为61.36%、15.55%和23.09%;SBC对萘的最佳吸附条件为转速200r/min,温度35℃,投加量0.4g,在该条件下萘的去除率可达85.06%;SBC对萘的吸附过程符合准二级动力学模型,Langmuir等温吸附模型可以更好地描述SBC对萘的吸附。扫描电子显微镜和BET比表面积分析表明,SBC表面粗糙,具有丰富的孔隙结构,能有效吸附废水中的萘。  相似文献   

17.
为了制备一种高效吸附含Pb(II)废水的生物炭材料,以椰壳(CS)和方解石(CAL)为原料,采用共热解法分别在500℃、600℃、700℃制备了方解石/生物炭(CAL/BC)复合材料。通过SEM、ICP-MS、BET、XRD、FTIR等方法对CAL/BC复合材料的表面微观形态和结构进行了表征。结果发现,三种热解温度条件下,CAL均能够与CS紧密结合,而且CAL/BC具有较大的比表面积,表面含有丰富的官能团。批量吸附实验结果表明,CAL和CS质量比为1∶2,pH值为5.5,吸附剂添加量为1.5 g·L?1,此时CAL/BC复合材料对Pb(II)的吸附量分别为95.24 mg·g?1(500℃)、99.01 mg·g?1(600℃)、185.19 mg·g?1(700℃),可见热解温度为700℃时,吸附效果最佳。吸附过程符合二级动力学模型和Langmuir等温线模型。CAL/BC复合材料吸附Pb(II)的主要机制是沉淀、离子交换、阳离子-π作用、孔隙填充和静电引力。此外,CAL/BC复合材料在4次吸附-解吸循环后仍能保持较高的Pb(II)去除率。因此,共热解法制备的CAL/BC复合材料在处理废水中的Pb(II)方面具有广阔的应用前景。   相似文献   

18.
生物炭及其复合材料吸附重金属离子的研究进展   总被引:3,自引:0,他引:3  
生物炭作为废弃生物质在缺氧条件下热解得到的固态产物,由于其表面具有丰富的官能团及较强的吸附性能等优点而被广泛应用到重金属废水处理。近年来,众多学者将生物炭与其他材料通过物理、化学方法结合,制备出对重金属离子具有优良吸附性能的生物炭复合材料。首先介绍了生物炭及其复合材料的制备方法和基本特性,其次考察了生物炭及其复合材料对重金属离子的吸附效果及影响因素,最后阐述了生物炭及其复合材料吸附重金属离子的机制,并对生物炭及其复合材料处理重金属离子的发展方向进行了展望。  相似文献   

19.
林玮  袁子洲 《材料保护》2021,54(9):148-152
为了实现铁基非晶合金在净化重金属离子溶液技术这一领域的突破乃至应用,采用Fe-Si-B系非晶态雾化粉末研究了其对溶液中毒性较强的Cd(Ⅱ)的去除效果.结果 表明:反应过程中生成的Cd(Ⅱ)的相关产物说明该重金属离子的去除是一个还原与吸附并存的过程,且生成的反应拟合曲线符合伪一级动力学模型.通过研究不同环境因素对Fe-Si-B非晶态雾化粉末去除Cd(Ⅱ)的影响,发现去除效率与温度、粉末投加量呈正相关关系,与溶液中Cd(Ⅱ)的起始浓度呈负相关关系.pH值因素影响的结果说明在碱性环境中有利于Cd(Ⅱ)去除速率和去除率的提升.  相似文献   

20.
以碳酸钾为活化剂、少量活性炭为吸波剂,在氩气保护下对玉米秸秆进行微波加热制备活性生物炭。采用比表面积(BET)、扫描电镜和能谱(SEM和EDS)及化学检测的方法,研究了微波加热过程中生物炭孔隙度的变化规律,考察了温度、活化剂(K2CO3)配量、微波功率和保温时间对生物炭吸附性能及产率的影响。结果表明,微波加热制备活性生物炭的最佳条件为:温度650℃、活化剂(K2CO3)配量150%、微波功率700W、保温时间5min。此条件下获得产率为28.1%的活性生物炭,具有发达的多级孔隙结构,比表面积1036.7m2/g;而且此生物炭吸附性能较好,其中碘吸附值1238.7mg/g,亚甲基蓝吸附值254mg/g,优于木质净水用活性炭国家一级标准(GB/T 13804.3-1999)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号