首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
石墨烯是一种新兴的二维碳纳米材料,具有良好的力学、导电以及润滑性能,是铜基复合材料中最具潜力的增强体.本文综述了石墨烯增强铜基复合材料的制备工艺,详细分析并归纳了石墨烯增强铜基复合材料的界面结构对于复合材料力学性能的影响及增强机制,总结了石墨烯增强铜基复合材料摩擦学行为研究的最新进展,并深入阐述了石墨烯增强铜基复合材料的润滑耐磨机制,最后,展望了石墨烯增强铜基复合材料的发展前景.  相似文献   

2.
石墨烯具有特殊的二维平面蜂窝状结构和优异的性能,是理想的金属复合材料的增强体。粉末冶金法作为制备石墨烯/铜复合材料的传统的方法,面临着石墨烯难以分散以及与金属基底结合差等困境,尽管该法可有效提高复合材料力学性能,但也降低了其导热导电性能。随着人们对石墨烯/铜的结构与界面问题的深入研究,一些新的粉体制备工艺如原位生长法制备出了优异性能铜基复合材料,这将有助于开发出优异性能的铜基电接触材料。从石墨烯/铜复合材料的制备工艺(化学气相沉积法、机械混合以及原位生长石墨烯等)、性能(机械性能、导热性能以及抗氧化和防腐蚀性能等)及其在电接触材料的应用和石墨烯/铜的未来发展趋势等方面进行阐述。  相似文献   

3.
石墨烯具有特殊的二维平面蜂窝状结构和优异的性能,是理想的金属复合材料的增强体。粉末冶金法作为制备石墨烯/铜复合材料的传统的方法,面临着石墨烯难以分散以及与金属基底结合差等困境,尽管该法可有效提高复合材料力学性能,但也降低了其导热导电性能。随着人们对石墨烯/铜的结构与界面问题的深入研究,一些新的粉体制备工艺如原位生长法制备出了优异性能铜基复合材料,这将有助于开发出优异性能的铜基电接触材料。从石墨烯/铜复合材料的制备工艺(化学气相沉积法、机械混合以及原位生长石墨烯等)、性能(机械性能、导热性能以及抗氧化和防腐蚀性能等)及其在电接触材料的应用和石墨烯/铜的未来发展趋势等方面进行阐述。  相似文献   

4.
采用一步化学还原法结合放电等离子烧结工艺制备石墨烯增强铜基复合材料,利用XRD、SEM、拉曼光谱、拉伸试验机、纳米压痕仪、涡流电导率仪等研究石墨烯含量对复合材料微观组织、力学性能和导电性能的影响。结果表明:石墨烯在复合材料基体中均匀分布,石墨烯的添加能显著增强铜基体的力学性能。与纯铜相比,添加0.025%(质量分数)的氧化石墨烯,可使其屈服强度提高219.8%,抗拉强度提高35.9%,弹性模量提高6.9%,此外,其导电率仍有93.1%IACS。随着石墨烯含量的增加,复合材料的屈服强度、抗拉强度及弹性模量均有所下降,这是因为高石墨烯含量复合粉体中部分石墨烯纳米片未能被铜颗粒包覆,其与铜基体界面结合强度低,石墨烯的剪切应力转移强化效果降低。  相似文献   

5.
铜(Cu)基复合材料具有优异的力学、热学、电学及耐磨和耐腐蚀等性能,广泛应用于各种工业技术领域。石墨烯(Graphene,Gr)具有二维平面结构和优异的综合性能,是金属基复合材料理想的增强相。石墨烯增强铜基复合材料拓展了铜及其合金的应用范围,适当的制备方法可以使其在保持优异导电导热性能的同时拥有更好的力学性能。石墨烯在铜基体中的存在形式主要以还原氧化石墨烯、石墨烯纳米片或与金属氧化物/碳化物纳米颗粒连接,旨在增强两者之间的界面结合。因此,石墨烯在铜基体中的结构完整性及存在形式直接影响了其性能的优劣。本文综述了Cu/Gr复合材料的制备及模拟方法、复合材料的性能评价及力学性能与功能特性的相互影响规律。指明Cu/Gr复合材料的发展关键在于:(1)分散性与界面结合;(2)三维石墨烯结构的构建;(3)界面结合对力学性能与功能特性的影响及两者间的相互协调。  相似文献   

6.
石墨烯具有独特的二维结构及性能已成为金属基复合材料制备过程中理想的增强相备选材料之一。而铜因具有良好的导热性、导电性和化学稳定性已被广泛应用到电子产品中,但其存在机械强度低、硬度低等缺点成为其应用亟需解决的瓶颈问题。目前,将石墨烯和铜基材料进行结合,虽然在一定程度上可以改善铜基材料的的综合性能。但由于石墨烯易产生团聚,石墨烯与铜之间的润湿性差,使其两者难以形成良好的界面结合,进而导致复合材料的性能变差。因此,为了解决上述问题,本文通过化学还原法在石墨烯上负载铜粒子对石墨烯进行改性处理,成功制备了石墨烯负载铜复合粉体(Cu-rGO),并将其作为增强相,与纳米铜粉混合,运用放电等离子烧结(SPS)工艺制备了石墨烯负载铜增强铜基块体复合材料(Cu-rGO/Cu),研究Cu-rGO复合粉体含量对铜基体组织和性能的影响。研究发现,在50 mg氧化石墨烯(GO)和200 mg硫酸铜(CuSO4·5H2O)时,获得Cu-rGO复合粉体中还原氧化石墨烯较薄且分布均匀。同时结合TEM结构分析发现铜基体与增强相接触界面紧密,且增强相的引入可以有效地细化块体复合材料的晶粒。另外,随着增强相含量的递增,硬度呈...  相似文献   

7.
采用球磨和真空热压烧结方法成功制备氧化石墨烯/铜复合材料。利用OM,SEM,XRD,显微硬度计和电子万能试验机等分析球磨后的复合粉形貌,研究氧化石墨烯添加量对复合微观结构及力学性能的影响。结果表明:制备的氧化石墨烯/铜基复合材料组织致密,氧化石墨烯以片状形态较均匀地分布在铜基体中,并与铜基体形成良好的结合界面。氧化石墨烯质量分数为0.5%时,复合材料的综合力学性能较好,显微硬度和室温压缩强度分别为63HV和276MPa,相对于纯铜基体分别提高了8.6%和28%。其强化机理为剪切应力转移强化、位错强化和细晶强化。  相似文献   

8.
采用电场压力激活辅助合成工艺(Field activated and pressure assisted synthesis process (FAPAS))制备铜基石墨烯复合材料,研究不同的石墨烯含量对铜基体材料的微观结构和性能的影响机理。结果表明,石墨烯的添加能提高材料的位错密度、阻止位错在晶界移动,硬度提升17.6%;由于石墨烯添加量少,对铜基复合材料的位错密度和晶粒尺寸影响有限,片状的石墨烯能有效地弥补制备产生的缺陷,使材料的热导率和电导率分别提升2.9%和4.4%;石墨烯的添加使腐蚀电池两极间的电位差减小,降低了铜离子在氧化膜中的扩散能力,使复合材料的阻抗提升5.3%,腐蚀电流密度下降28.2%,有效地提升了铜基复合材料的耐腐蚀性能。铜基石墨烯复合材料的石墨烯最佳添加量为0.5 wt.%。  相似文献   

9.
烧结压力是粉末冶金制备材料过程中重要工艺参数之一,通过在石墨烯/铜中添加钛粉以改善二者润湿性,使用超声分散和球磨法进行混粉,用放电等离子烧结(SPS)的方式制备石墨烯铜基复合材料,在5,15,25,30MPa 4种不同压力下进行烧结。用金相显微镜和扫描电子显微镜(SEM)对石墨烯增强铜基复合材料显微结构进行观察,测量试样密度,并采用硬度计、导电率测试仪对力学性能和导电性能进行测试。结果表明,随着烧结压力的升高,复合材料晶粒尺寸不断减小,导电率先上升后下降。当烧结压力达到25 MPa时,导电率最大为51.2%IACS;复合材料的密度和硬度值不断增大。  相似文献   

10.
本研究通过脱合金化和化学气相沉积相结合的方法,以纳米多孔铜为基底,制备了三维石墨烯/铜基复合材料.该复合材料电导率在93.5%IACS的情况下,硬度和抗拉强度分别达到55.2 HV和330 MPa.相较于一般的铜基复合材料,原位合成制备的石墨烯不仅可在多孔铜基体内三维连续分布铺展生长,而且高质量生长并且均匀分散的薄层石墨烯对复合材料的物理与机械性能增强起到重要作用.为石墨烯/金属基复合材料研究提供了新思路.  相似文献   

11.
可穿戴设备的快速发展刺激了对柔性高面容量储能设备的迫切需求。本工作采用一种简单的无粘结剂阴极电沉积方法将纳米片状RuOx·nH2O沉积固定在三维石墨烯骨架上, 以提高RuOx·nH2O的利用效率, 实现了更优良的电极导电性, 并缩短了质子和电子的扩散传输路径。在2 mV?s -1时, 它的面容量高达3.78 F?cm -2, 主要归因于材料的纳米层状结构有利于电解质进入活性物质RuOx·nH2O的内部。另外, 以这种电极材料制备得到的全固态柔性超级电容器, 在10 mA?cm -2的电流密度下, 能量密度达到0.1 mWh?cm -2, 功率密度达到2.4 mW?cm -2, 超过大部分文献报道。  相似文献   

12.
The research works of graphene-reinforced metal matrix composites will be summarised in this paper. Comparatively, much less research works have been undertaken in this field. Graphene has been thought to be an ideal reinforcement material for composites due to its unique two-dimensional structure and outstanding physical and mechanical properties. It is expected to yield structural materials with high specific strength or functional materials with exciting thermal and electrical characteristics. This paper will introduce all kinds of graphene-reinforced metal matrix composites that have been studied. The microstructure and mechanical properties, processing techniques, graphene dispersion, strengthening mechanisms, interfacial reactions between graphene and the metal matrix and future research works in this field will be discussed.  相似文献   

13.
以中间相沥青为粘结剂, 采用500 ℃低温炭化炭纤维, 经低压模压成型、炭化和石墨化后得到低密度高导热炭纤维网络体。与以1300 ℃炭化炭纤维为原料和以酚醛为粘结剂制备的炭纤维网络体进行了比较。对粘结剂炭收率(热重分析)、样品微观形貌(扫描电子显微分析)、石墨化度及微晶尺寸(X射线衍射分析)等进行了表征。研究结果表明: 由于高炭收率和高片层取向度的中间相沥青与500 ℃低温炭化处理炭纤维共同经历后续热处理时呈现出相近的热收缩率, 因而具备良好的相互粘结性和石墨片层铆接效应, 其制备的炭纤维网络体经石墨化后密度为0.317 g?cm -3, 由此制备的相变复合材料的面内热导率为19.30 W·m -1·K -1, 较纯相变材料(石蜡)提升了80倍, 明显高于以1300 ℃炭化炭纤维为原料, 以中间相沥青和酚醛分别为粘结剂制备样品的面内热导率(17.03和14.47 W·m -1·K -1)。  相似文献   

14.
采用热压法将拥有超高导热率和负热膨胀系数(CTE)的中间相沥青基短碳纤维(CFs)与Cu复合,并利用化学气相沉积技术对CFs镀Cr以改善其与Cu的结合状况,研究了所制备的镀Cr CFs/Cu复合材料的显微结构与热性能。结果表明:在制备中Cr层的大部分与CFs表层的C反应形成连续、均匀的界面薄层Cr7C3,少量的扩散于Cu基体中,使CFs与Cu之间的界面由结合极差的机械结合转化成良好的冶金结合,有效提升了复合材料的热性能。CFs含量为40vol%~55vol%时,镀Cr CFs/Cu复合材料致密度高于97.5%,平面方向上的热导率达393~419 W(mK)-1,平面方向的CTE在5.1×10-6~8.4×10-6 K-1之间。高的热导率、低的CTE以及优良的可加工性能使其成为极有潜力的电子封装材料。  相似文献   

15.
In the present study, processing of graphene-reinforced copper nanocomposite foils with homogenous dispersion of graphene throughout the matrix, exhibiting good mechanical properties by a simple, cost-effective, and scalable pulse reverse electrodeposition technique (PRED) with special focus on the influence of graphene content in the electrolyte to tailor the properties. A systematic approach has been adopted for enhancing the properties. Distribution of graphene nanosheets in the copper metal matrix and the microstructural properties have been studied by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). Interesting observations have been made from nanoindentation studies, where hardness (~2.7 GPa) enhanced mainly with increase in graphene content (0–0.75 g/L), while maximum elastic modulus (~139 GPa) is achieved for a graphene content of 0.5 g/L in the electrolyte. Four-point probe testing has been adopted to evaluate the electrical features. The major contribution in enhancement of properties is found to be the presence of graphene and its uniform individual dispersion and distribution as nanosheets in the copper matrix.  相似文献   

16.
为了使微波基板材料与Cu金属衬底的热膨胀性能匹配,对陶瓷/聚四氟乙烯(PTFE)微波复合基板材料的热膨胀性能进行了研究。采用湿法工艺制备了以SiO2和TiO2为填料的SiO2-TiO2/PTFE复合材料,研究了复合材料密度、填料粒度和填料体积分数对SiO2-TiO2/PTFE复合材料热膨胀性能的影响。结果表明,当SiO2的体积分数由0增至40%(TiO2 :34%~26%)时,SiO2-TiO2/PTFE复合材料的线膨胀系数(CTE)由50.13×10-6 K-1减小至10.03×10-6K-1。陶瓷粉体粒径和复合材料密度减小会导致CTE减小。通过ROM、Turner和Kerner模型计算CTE发现,ROM和Kerner模型与实验数据较相符,而实验值与Turner模型预测值之间的差异随PTFE含量的升高而逐渐增大。  相似文献   

17.
李勇  赵亚茹  李焕  周雅婷 《材料导报》2016,30(11):71-76
石墨烯由于独特的结构和优异的性能已成为金属基复合材料中最具吸引力的碳质材料增强体。综述了近年来石墨烯增强金属基复合材料的研究进展、强化机制及石墨烯表面改性进展,分析了石墨烯增强金属基复合材料研究存在的问题,并对石墨烯增强金属基复合材料的研究方向及发展趋势进行了展望。  相似文献   

18.
为了从理论上探讨纳米粒子在基体材料中的分布规律, 以纳米SiC质量分数为3%、 5%、 7%、 9%的SiC/PTFE(聚四氟乙烯)复合材料为例, 根据纳米SiC的半径(25 nm)、 密度(3.2 g/cm3)、 质量分数和基体材料的密度(2.2 g/cm3), 以10-12 g为质量单位、 25 nm:1像素为比例尺, 建立了纳米粒子在基体中均匀/偏聚分布的三维仿真模型, 基于其盒维数定量表征了不同团聚/偏聚程度的纳米粒子的分散度, 并进行了力学实验验证。结果表明: 均匀分布下随着纳米SiC粒子半径的不断增加, 或体积分数的不断减小, 其盒维数也逐渐减小; 当SiC粒子半径超过100 nm时, 不再具有分形特性。偏聚分布下随着纳米SiC粒子(半径为50 nm)间距的不断加大, 或体积分数的不断减小, 或层状、 线状、 团状分布的依次改变, 其盒维数也逐渐减小; 相同体积分数下偏聚分布的盒维数低于均匀分布; 当粒子间距超过450 nm时, 不再具有分形特性。均匀分布下纳米SiC/PTFE复合材料的力学性能测试结果与其三维仿真模型的盒维数线性相关(|R|>0.9)。盒维数可定量表征纳米粒子的分散度, 并可用于预测纳米复合材料的宏观性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号