首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
合成了表面接枝磺酸基团的改性多壁碳纳米管(S-MWNTs),通过溶液共混法制备了用于直接甲醇燃料电池的磺化聚醚醚酮(SPEEK)/S-MWNTs复合膜.扫描电镜显示,SMWNTs在掺杂量比较少时,能够在SPEEK基体中均匀分散;热重分析证明,复合膜具有优异的热稳定性.当掺杂量为1%时,复合膜的机械性能,尺寸稳定性及电导率均提高,这有效解决了纯SPEEK膜中质子电导率与机械性能、尺寸稳定性等相矛盾的问题.  相似文献   

2.
以磺化聚醚醚酮(SPEEK)为基体,以有机改性的蒙脱土(OMMT)为无机相,采用溶液插层法成功制备出了可望应用于直接甲醇燃料电池的SPEEK/OMMT复合型质子交换膜.通过X射线衍射(XRD)表征了复合膜的微观结构,并采用交流阻抗和隔膜扩散方法分别考察了复合膜的质子传导性能和阻醇性能.结果表明,蒙脱土的片层间距超过4.4 nm,SPEEK高分子链已插层到蒙脱土片层之间.与纯SPEEK膜相比,SPEEK/OMMT复合膜的质子传导率有所降低,但在90℃也达到了1.2×10-2S/cm的水平,而且蒙脱土的加入明显地降低了SPEEK膜的甲醇渗透率.  相似文献   

3.
以磺化杂萘联苯聚醚酮(SPPEK)为基体,采用共混法制备了SPPEK/PWA复合质子交换膜。采用红外光谱、热分析与交流阻抗等方法对复合膜的结构和性能进行了研究,并与Nafion117膜进行了比较。结果表明,磷钨酸(PWA)的掺杂使得复合膜的吸水率和溶胀度增大,同时热稳定性能得到提高。复合膜在20℃时的质子电导率为0.67×10-2S/cm,接近Nafion117膜的质子电导率(1.08×10-2S/cm)。且随着温度的升高,电导率逐渐增大,最高可达1.18×10-2S/cm。此外,对复合膜不同方向上的电导率进行了测试,表明膜平面方向上的电导率(8.10×10-2S/cm)高于厚度方向上电导率(7.50×10-3S/cm)约一个数量级。  相似文献   

4.
采用溶胶-凝胶法制备P2O5/SiO2溶胶与P2O5/SiO2粉末,之后分别与磺化聚醚醚酮(SPEEK)复合,制得无机/有机复合质子交换膜并研究了两种膜的形貌、力学性能以及质子电导率。与纯SPEEK膜相比,P2O5/SiO2无机成分的引入能显著改善复合膜的质子导电性能。同时,P2O5/SiO2的不同引入方式导致复合膜具有不同的结构,进而引起复合膜力学性能与质子导电性能上的差异。在所制备的无机/有机复合膜中,含有40%P2O5/SiO2(质量分数)粉末的复合膜的质子电导率达到1.6×10-2 S/cm,其所组装的单电池的开路电压为0.95V,峰值功率密度达到446mW/cm2。  相似文献   

5.
通过向磺化聚醚醚酮(SPEEK)和聚偏氟乙烯(PVDF)复合物中添加P_2O_5-SiO_2溶胶,成功合成了有机/无机复合质子交换膜。对比于SPEEK/PVDF复合膜,所制备的有机/无机复合质子交换膜不仅保持了较高的尺寸稳定性及力学性能,同时还进一步提升了其质子电导率和吸水率。在所制备的有机/无机复合膜中,40%(质量分数)P_2O_5-SiO_2的有机/无机复合膜质子电导率达到0.1883S/cm,其所组装的单电池的开路电压为0.996V,峰值功率密度达到490mW/cm2。  相似文献   

6.
通过向磺化聚醚醚酮(SPEEK)和聚偏氟乙烯(PVDF)复合物中添加P_2O_5-SiO_2溶胶,成功合成了有机/无机复合质子交换膜。对比于SPEEK/PVDF复合膜,所制备的有机/无机复合质子交换膜不仅保持了较高的尺寸稳定性及力学性能,同时还进一步提升了其质子电导率和吸水率。在所制备的有机/无机复合膜中,40%(质量分数)P_2O_5-SiO_2的有机/无机复合膜质子电导率达到0.1883S/cm,其所组装的单电池的开路电压为0.996V,峰值功率密度达到490mW/cm2。  相似文献   

7.
采用3种具有不同链段长度、分子结构的硅氧烷二胺与磺化聚醚醚酮(SPEEK)反应,制备了3种具有不同交联结构的磺化聚醚醚酮质子交换膜。通过傅里叶变换红外光谱证实了交联结构的存在。通过热重分析仪、万能材料试验机和电化学综合站,研究了不同硅氧烷交联结构对质子交换膜的力学性能、热稳定性、水中尺寸稳定性、甲醇渗透率、可交换阳离子容量和质子传导率等性能的影响。结果表明,交联改性可大幅度提高SPEEK膜的力学性能、阻醇性能以及尺寸稳定性。使用含苯环结构的硅氧烷二胺(PMS)制备的交联结构质子交换膜具有最好的综合性能。相较于SPEEK纯膜,SPEEK/PMS交联质子膜的甲醇渗透系数由2.28×10~(-6) cm~2/s减小到1.89×10~(-7) cm~2/s,有效选择性是纯膜的5.6倍,溶胀比降低了59.7%。  相似文献   

8.
以磺化度为75%的磺化聚醚醚酮(SPEEK)为原料,加入聚醚酰亚胺(PEI)和离子液体(ILs)制备SPEEK/PEI@ILs酸碱复合膜用于质子交换膜电解水制氢(PEMWE)中.研究复合膜的吸水率、溶胀度、质子电导率、热稳定性和相应的PEMWE性能.结果表明,SPEEK/PEI@ILs复合膜与商业Nafion117膜相比,具有相近的质子电导率和溶胀度,说明PEI的加入,增强了复合膜的尺寸稳定性.将SPEEK/PEI@ILs复合膜制备成膜电极并测试PEMWE性能,1 A/cm2电流密度下槽电压为2.75 V,在0.5 A/cm2@1.96(±0.03)V条件下能稳定运行10 h.  相似文献   

9.
用球磨法对SiO2进行了改性并制备改性SiO2/磺化聚醚醚酮(SPEEK)复合膜,用扫描电镜分析了膜的形貌,并测定了其热稳定性、拉伸强度、电导率等性能.SEM分析结果表明,当SiO2含量为10%时,KH560改性SiO2(简记为:SiO2-KH560)在复合膜中的分布更均匀,并基本呈纳米尺度分布;膜的性能测定结果表明,复合膜的热稳定性都较均质膜有较大的提高;当SPEEK离子交换容量相同时,与均质膜相比,复合膜的电导率以及抗拉强度有增大趋势.  相似文献   

10.
将磺化度为62%的磺化聚砜(SPSf)与笼型倍半硅氧烷(POSS-NH_2)进行共混,得到系列SPSf/POSS-NH_2杂化质子传导膜,研究了POSS-NH_2含量对SPSf/POSS-NH_2膜的吸水率、面电阻、质子电导率、钒离子渗透率、机械强度、耐氧化性能及相应钒电池性能的影响.研究表明,添加POSS-NH_2后,热分解温度提高,质子电导率可达10.55 mS/cm, POSS-NH_2质量分数为5%的S-P-5%杂化膜钒离子渗透率降低至5.47×10~(-9) cm~2/min,质子选择性提高(1.930×10~6 S·min/cm~3),远优于Nafion115膜(1.23×10~5 S·min/cm~3)和纯SPSf膜(S-P-0%膜)(5.41×10~5 S·min/cm~3).与S-P-0%膜相比,S-P-5%膜为电池效率最佳,库伦效率可稳定维持在99.4%左右,高于Nafion115膜(92.38%)和S-P-0%膜(91.72%),电压效率和能量效率也得到明显提升,300次循环仍然具有较稳定的电池效率,自放电时间达117 h,是Nafion115膜的10倍,POSS的引入为SPSf质子传导膜性能的提升提供了新思路.  相似文献   

11.
研究了磷钨酸掺杂改性后质子交换膜的热稳定性及热降解动力学,利用热重分析在氮气气氛下和升温速率分别为5℃、20℃和30℃时,采用Kissinger、Flynn-Wall-Ozawa、Friedman和Starink方法对磷钨酸改性后的非等温动力学数据进行了分析。热失重曲线显示磷钨酸改性后质子交换膜分解率达到5%和10%时,最低热降解温度分别为173.6℃和284.8℃。采用不同方法的计算结果显示,改性后膜分解反应受D2机理控制,表观活化能约为163.74 kJ/mol。改性前后膜的电导率(σ)分别为8.34×10-7S/cm及2.57×10-5S/cm。  相似文献   

12.
制备了聚2-丙烯酰胺-2-甲基丙磺酸(PAM PS)/聚乙烯醇(PVA)复合质子交换膜,并研究了膜的组成、甲醇水溶液浓度等对膜力学强度、电导率和甲醇渗透率的影响。实验发现,当PAM PS含量为50%时,此复合膜拉伸强度可达21.8 M Pa,电导率σ可达1.5×1-0 2S/cm,并且甲醇透过率P仅为9.8×1-0 8cm2/S。  相似文献   

13.
将蒙脱土(MMT)填充到羧甲基纤维素钠(CMC)中制得CMC/MMT复合膜,研究MMT用量对CMC/MMT复合膜的力学性能和气体阻隔性能的影响,用扫描电镜和透射电镜进行结构分析。结果表明,添加适量的MMT可以显著提高CMC/MMT复合膜的力学性能和气体阻隔性能。当MMT添加量为10%(wt,质量分数)时,CMC/MMT复合膜的拉伸强度由105MPa提高到375MPa,水蒸汽透过系数为2.079×10~(-6)g·cm/m~2·s·Pa,透氧系数为1.65×10~(-15)cm~3·cm/cm~2·s·Pa。此外,由于MMT具有耐火性,CMC/MMT复合膜具有良好的阻燃性。  相似文献   

14.
磺化酚酞型聚醚砜/改性蒙脱土纳米复合膜的研究   总被引:1,自引:0,他引:1  
用季胺盐改性蒙脱土和磺化酚酞型聚醚砜首次制得了磺化酚酞型聚醚砜/改性蒙脱土纳米复合质子交换膜,并用1H NMR、SEM、FT-IR等分析手段对其进行了表征,测定了复合膜的质子导电率.研究结果表明:改性蒙脱土以纳米颗粒形式分散于磺化酚酞型聚醚砜聚合物基体中;在相同测试温度下,磺化酚酞型聚醚砜/改性蒙脱土纳米复合质子交换膜的质子电导率随着改性蒙脱土含量增加而增加,添加10%(wt)改性蒙脱土的复合质子交换膜,在80℃下的质子电导率为8.53×10-4S/cm.  相似文献   

15.
为提高磺化聚醚醚酮(SPFEK)质子交换膜的化学稳定性及质子传导率等性能,采用溶胶-凝胶法制备了SiO_2/SPFEK复合质子交换膜,利用扫描电子显微镜(SEM)对复合膜的微观形态进行了表征,并考察了不同SiO_2掺杂量对质子交换膜性能的影响.结果表明,纳米SiO_2能提高膜的质子传导率和氧化稳定性.当SiO_2掺杂质量分数为8%时,复合膜的质子传导率在80℃时为5.59×10~(-2) S/cm,且表现出良好的氧化稳定性等.  相似文献   

16.
采用固相法合成了Ba与Ga共掺杂的Li_7La_3Zr_2O_(12)(LLZO)石榴石型固态电解质粉末,再结合常压烧结制备了Ba、Ga共掺杂LLZO样品。采用X射线衍射、扫描电镜、能谱分析和交流阻抗法对样品的物相结构、微观形貌、成分分布及电导率进行了表征。结果表明,在烧结温度1 100℃下得到了立方相的LLZO固态电解质。当Ga的含量在LLZO化学式中为0.15,Ba掺杂量从0增加至0.15(Ga_(0.15)Ba_x-Li_(6.55+x)La_(3-x)Zr_2O_(12),x=0~0.15)时,LLZO样品的平均晶粒尺寸从14μm下降到4μm,30℃时晶界电导率由1.54×10~(-5)S·cm~(-1)提升到2.22×10~(-4)S·cm~(-1)。Ba作为一种烧结剂,改善了材料的烧结性能,降低了材料的平均晶粒尺寸,使晶粒与晶粒连接得更紧密。Li_(6.7)Ga_(0.15)La_(2.85)Ba_(0.15)Zr_2O_(12)样品在30℃下的总电导率为2.11×10~(-4)S·cm~(-1),远高于单独掺杂Ga时Li_(6.55)Ga_(0.15)La_3Zr_2O_(12)样品的总电导率(σ=1.40×10~(-5)S·cm~(-1)),由此可见,Ba、Ga共掺杂极大地提高了LLZO的锂离子电导率。  相似文献   

17.
直接乙醇燃料电池用Nafion/SiO_2复合膜的制备及性能研究   总被引:2,自引:0,他引:2  
用纳米SiO2对Nafion117进行了掺杂改性并制膜,采用气相色谱分析仪和电化学工作站分别对膜的渗透率和质子电导率等进行了研究。结果表明,掺杂改性后,经60℃硅溶胶处理的膜具有高的质子导电率和高温保水性能,同时使膜的乙醇渗透率大幅度降低。经60℃硅溶胶处理的膜和其它条件处理的膜的渗透系数为4.07×10-4cm2/s、8.13×10-4cm2/s,表明经过60℃硅溶胶处理的Nafion膜乙醇渗透系数降低一半。  相似文献   

18.
开发价格低廉且性能优异的质子交换膜是目前燃料电池研究的热点.采用溶胶-凝胶法将磺化聚苯醚(SPPO)与磷酸锆(ZrP)复合得到质子交换膜,重点考察了ZrP含量对复合膜含水率、溶胀度和质子电导率的影响,采用红外光谱和交流阻抗法表征SPPO-ZrP复合膜的微观结构和质子电导率.结果表明SPPO与ZrP产生相互作用使SPPO结构发生变化.SPPO-ZrP复合膜含水率和溶胀度都随着ZrP质量分数增加而逐渐减小,当ZrP质量分数为20%时,膜的含水率和溶胀度分别达到18%和2.1%.通过交流阻抗法对质子传导性能的表征结果显示,随ZrP质量分数增加复合膜质子电导率逐渐增大,ZrP质量分数20%的SPPO-ZrP复合膜质子电导率在室温下达到1.6×10-2S/cm.  相似文献   

19.
采用原位合成的方法制备了聚2,5-苯并咪唑(ABPBI)/八氨基笼状倍半硅氧烷(AM-POSS)复合膜材料,并对其化学结构、表面形貌、热稳定性、力学性能、磷酸吸收性能及质子传导性能进行了表征和测试。结果分析认为,与纯ABPBI膜比较,ABPBI/AM-POSS复合膜基体因独特的"八爪鱼"结构而提高了复合膜的热稳定性能和力学强度;AM-POSS粒子的添加还显著提高复合膜的磷酸吸收能力,进而提高了复合膜的质子传导率;ABPBI/3%AM-POSS复合膜在磷酸掺杂水平达到252%时在80~140℃较宽温度范围内质子传导率超过0.1 S/cm;表明AM-POSS改性的ABPBI复合膜具备应用于宽温域质子交换膜燃料电池前景。  相似文献   

20.
直接甲醇燃料电池用磺化聚醚醚酮质子交换膜   总被引:1,自引:0,他引:1  
在回顾近年来直接甲醇燃料电池用磺化聚醚醚酮(SPEEK)质子交换膜的发展历程基础上,分别综述了制膜材料SPEEK的合成和SPEEK质子交换膜的制备研究进展,重点总结了SPEEK质子交换膜的电导率和阻醇性能及其稳定性的影响因素和影响规律,其中包括制膜材料和溶剂以及工艺、SPEEK的共混改性、SPEEK的填充改性或多层复合结构的影响,进而分析了高性能SPEEK质子交换膜的开发研究前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号