首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical and electrical properties of electron-irradiated Cu(In,Ga)Se2 (CIGS) solar cells and the thin films that composed the CIGS solar cell structure were investigated. The transmittance of indium tin oxide (ITO), ZnO:Al, ZnO:Ga, undoped ZnO, and CdS thin films did not change for a fluence of up to 1.5 × 1018 cm− 2. However, the resistivity of ZnO:Al and ZnO:Ga, which are generally used as window layers for CIGS solar cells, increased with increasing irradiation fluence. For CIGS thin films, the photoluminescence peak intensity due to Cu-related point defects, which do not significantly affect solar cell performance, increased with increasing electron irradiation. In CIGS solar cells, decreasing JSC and increasing Rs reflected the influence of irradiated ZnO:Al, and decreasing VOC and increasing Rsh mainly tended to reflect the pn-interface properties. These results may indicate that the surface ZnO:Al thin film and several heterojunctions tend to degrade easily by electron irradiation as compared with the bulk of semiconductor-composed solar cells.  相似文献   

2.
Compared to zinc oxide grown (ZnO) on flat glass, rough etched glass substrates decrease the sheet resistance (Rsq) of zinc oxide layers grown on it. We explain this Rsq reduction from a higher thickness and an improved electron mobility for ZnO layers deposited on rough etched glass substrates. When using this etched glass substrate, we also obtain a large variety of surface texture by changing the thickness of the ZnO layer grown on it. This new combination of etched glass and ZnO layer shows improved light trapping potential compared to ZnO films grown on flat glass. With this new approach, Micromorph thin film silicon tandem solar cells with high total current densities (sum of the top and bottom cell current density) of up to 26.8 mA cm− 2 were fabricated.  相似文献   

3.
This study examined the characteristics of Ga:In2O3 (IGO) co-sputtered Zn:In2O3 (IZO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature in a pure Ar atmosphere for transparent electrodes in IGZO-based TFTs. Electrical, optical, structural and surface properties of Ga and Zn co-doped In2O3 (IGZO) electrodes were investigated as a function of IGO and IZO target DC power during the co-sputtering process. Unlike semiconducting InGaZnO4 films, which were widely used as a channel layer in the oxide TFTs, the co-sputtered IGZO films showed a high transmittance (91.84%) and low resistivity (4.1 × 10− 4 Ω cm) at optimized DC power of the IGO and IZO targets, due to low atomic percent of Ga and Zn elements. Furthermore, the IGO co-sputtered IZO films showed a very smooth and featureless surface and an amorphous structure regardless of the IGO and IZO DC power due to the room temperature sputtering process. This indicates that co-sputtered IGZO films are a promising S/D electrode in the IGZO-based TFTs due to their low resistivity, high transmittance and same elements with channel InGaZnO4 layer.  相似文献   

4.
Thin film laminates composed of sputtered indium zinc oxide and silver, optimized for conductance and transparency, were tested for water vapor permeation as well as mechanical durability in tension. The ~ 82 nm thick optimized indium-zinc-oxide/silver/indium-zinc-oxide (IZO/Ag/IZO) films were > 80% transparent in the visible range (400 nm-700 nm) with measured sheet resistances less than 5 Ω/sq. The water vapor permeation measurements using Ca test methods at several temperature/ humidity conditions indicated that the addition of the thin Ag layer provided little improvement relative to a single indium-zinc-oxide (IZO) layer of similar thickness. However, the critical strain in bending tests for IZO/Ag/IZO films was improved compared to IZO films. The modulus (E ~ 113 GPa), hardness (H ~ 7 GPa), fracture toughness (KIC ~ 1.1 MPa⋅m0.5), and interfacial shear (“adhesion”) (τc ~ 16 MPa) of/related to IZO, and measured by nanoindention are consistent with other brittle ceramic thin film materials.  相似文献   

5.
Electrical and optical properties of amorphous indium zinc oxide films   总被引:1,自引:0,他引:1  
Valence electron control and electron transport mechanisms on the amorphous indium zinc oxide (IZO) films were investigated. The amorphous IZO films were deposited by dc magnetron sputtering using an oxide ceramic IZO target (89.3 wt.% In2O3 and 10.7 wt.% ZnO). N-type impurity dopings, such as Sn, Al or F, could not lead to the increase in carrier density in the IZO. Whereas, H2 introduction into the IZO deposition process was confirmed to be effective to increase carrier density. By 30% H2 introduction into the deposition process, carrier density increased from 3.08 × 1020 to 7.65 × 1020 cm− 3, which must be originated in generations of oxygen vacancies or interstitial Zn2+ ions. Decrease in the transmittance in the near infrared region and increase in the optical band gap were observed with the H2 introduction, which corresponded to the increase in carrier density. The lowest resistivity of 3.39 × 10− 4 Ω cm was obtained by 10% H2 introduction without substrate heating during the deposition.  相似文献   

6.
A home-made radio frequency magnetron sputtering is used to systematically study the structural, electrical, and optical properties of aluminum doped zinc oxide (ZnO:Al) thin films. The intensity of the (002) peak exhibits a remarkable enhancement with increasing film thickness. Upon optimization, we achieved low resistivity of 4.2 × 10− 4 Ω cm and high transmittance of ~ 88% for ZnO:Al films. Based on the present experimental data, the carrier transport mechanism is discussed. It is found that the grain boundary scattering needs to be considered because the mean free path of free carrier is comparable to the grain size. The 80 nm-ZnO:Al thin films are then deposited onto low-frequency inductively coupled plasma fabricated silicon solar cells to assess the effect of ZnO:Al thin films on the performance of the solar cells. Optimized ZnO:Al thin films are identified as transparent and conductive oxide thin film layers.  相似文献   

7.
CuIn1 − xGaxSe2 (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm− 2 to 13 mA cm− 2 depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 °C). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented.  相似文献   

8.
Single crystalline undoped and Ga-doped n-type zinc oxide (ZnO) films were grown on sapphire (Al2O3) substrates by inductively coupled plasma (ICP) metal organic chemical vapor deposition. Effects of growth variables on the structural, optical, and electrical properties of ZnO films have been studied in detail. Single crystal films with flat and smooth surfaces were reproducibly obtained, with application of sample bias and O2 ICP. The best film properties were obtained at the growth condition of 650 °C, 400 W ICP power, − 94 V bias voltage, O/Zn (VI/II) ratio of 75. Single crystalline Ga doped n-ZnO films were also obtained, with free carrier concentration of about 1.5 × 1019/cm3 at 1 at.% Ga concentration.  相似文献   

9.
Ga-doped zinc oxide (ZnO:Ga) films were grown on glass substrate by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) using diethylzinc and water as reactant gases and triethyl gallium (TEG) as an n-type dopant gas. The structural, electrical and optical properties of ZnO:Ga films obtained at various flow rates of TEG ranging from 1.5 to 10 sccm were investigated. X-ray diffraction patterns and scanning electron microscopy images indicated that Ga-doping plays an important role in forming microstructures in ZnO films. A smooth surface with a predominant orientation of (101) was obtained for the ZnO:Ga film grown at a flow rate of TEG = 7.5 sccm. Moreover, a lowest resistivity of 3.6 × 10− 4 Ω cm and a highest mobility of 30.4 cm2 V− 1 s− 1 were presented by the same sample, as evaluated by Hall measurement. Otherwise, as the flow rate of TEG was increased, the average transmittance of ZnO:Ga films increased from 75% to more than 85% in the wavelength range of 400-800 nm, simultaneously with a blue-shift in the absorption edge. The results obtained suggest that low-resistivity and high-transparency ZnO films can be obtained by AP-MOCVD using Ga-doping sufficiently to make the films grow degenerate and effect the Burstein-Moss shift to raise the band-gap energy from 3.26 to 3.71 eV.  相似文献   

10.
D.Y. Ku  I. Lee  T.S. Lee  B. Cheong  W.M. Kim 《Thin solid films》2006,515(4):1364-1369
In this study, indium-zinc oxide (IZO) thin films have been prepared at a room temperature, 200 and 300 °C by radio frequency magnetron sputtering from a In2O3-12 wt.% ZnO sintered ceramic target, and their dependence of electrical and structural properties on the oxygen content in sputter gas, the substrate temperature and the post-heat treatment was investigated. X-ray diffraction measurements showed that amorphous IZO films were formed at room temperature (RT) regardless of oxygen content in sputter gas, and micro-crystalline and In2O3-oriented crystalline films were obtained at 200 and 300 °C, respectively. From the analysis on the electrical and the structural properties of annealed IZO films under Ar atmosphere at 200, 300, 400 and 500 °C, it was shown that oxygen content in sputter gas is a critical parameter that determines the local structure of amorphous IZO film, stability of amorphous phase as well as its eventual crystalline structure, which again decide the electrical properties of the IZO films. As-prepared amorphous IZO film deposited at RT gave specific resistivity as low as 4.48 × 10− 4 Ω cm, and the highest mobility value amounting to 47 cm2/V s was obtained from amorphous IZO film which was deposited in 0.5% oxygen content in sputter gas and subsequently annealed at 400 °C in Ar atmosphere.  相似文献   

11.
Indium zinc oxide (IZO) films were deposited as a function of the deposition temperature using a sintered indium zinc oxide target (In2O3:ZnO = 90:10 wt.%) by direct current (DC) magnetron reactive sputtering method. The influence of the substrate temperature on the microstructure, surface roughness and electrical properties was studied. With increasing the temperature up to 200 °C, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about 3.4 × 10− 4 Ω cm. Change of structural properties according to the deposition temperature was also observed with X-ray diffraction patterns, transmission electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. IZO films deposited above 300 °C showed polycrystalline phases evolved on the amorphous IZO layer. Very flat surface roughness could be obtained at lower than 200 °C of the substrate temperature, while surface roughness of the films was increased due to the formation of grains over 300 °C. Consequently, high quality IZO films could be prepared by DC magnetron sputtering with O2/Ar of 0.03 and deposition temperature in range of 150-200 °C; a specific resistivity of 3.4 × 10− 4 Ω cm, and the values of peak to valley roughness and root-mean-square roughness are less than 4 nm and 0.5 nm, respectively.  相似文献   

12.
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of substrate temperature on the structural, electrical, and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that higher temperature helps to promote Ga substitution more easily. The film deposited at 350 °C has the optimal crystal quality. The morphology of the films is strongly related to the substrate temperature. The film deposited is dense and flat with a columnar structure in the cross-section morphology. The transmittance of the ZnO:Ga thin films is over 90%. The lowest resistivity of the ZnO:Ga film is 4.48×10−4 Ω cm, for a film which was deposited at the substrate temperature of 300 °C.  相似文献   

13.
Natively textured surface aluminum-doped zinc oxide (ZnO:Al) layers for thin film solar cells were directly deposited without any surface treatments via pulsed direct-current reactive magnetron sputtering on glass substrates. Such an in-situ texturing method for sputtered ZnO:Al thin films has the advantages of efficiently reducing production costs and dramatically saving time in photovoltaic industrial processing. High purity metallic Zn-Al (purity: 99.999%, Al 2.0 wt.%) target and oxygen (purity: 99.999%) were used as source materials. During the reactive sputtering process, the oxygen gas flow rate was controlled using plasma emission monitoring. The performance of the textured surface ZnO:Al transparent conductive oxides (TCOs) thin films can be modified by changing the number of deposition rounds (i.e. thin-film thicknesses). The initially milky ZnO:Al TCO thin films deposited at a substrate temperature of ~ 553 K exhibit rough crater-like surface morphology with high transparencies (T ~ 80-85% in visible range) and excellent electrical properties (ρ ~ 3.4 × 10− 4 Ω cm). Finally, the textured-surface ZnO:Al TCO thin films were preliminarily applied in pin-type silicon thin film solar cells.  相似文献   

14.
H. Zhu  J. Hüpkes  A. Gerber 《Thin solid films》2010,518(17):4997-5002
Mid-frequency magnetron sputtering of aluminum doped zinc oxide films (ZnO:Al) from tube ceramic targets has been investigated for silicon based thin film solar cell applications. The influence of working pressure on structural, electrical, and optical properties of sputtered ZnO:Al films was studied. ZnO:Al thin films with a minimum resistivity of 3.4 × 104 Ω cm, high mobility of 50 cm²/Vs, and high optical transmission close to 90% in visible spectrum region were achieved. The surface texture of ZnO:Al films after a chemical etching step was investigated. A gradual increase in feature sizes (diameter and depth) was observed with increasing sputter pressure. Silicon based thin film solar cells were prepared using the etched ZnO:Al films as front contacts. Energy conversion efficiencies of up to 10.2% were obtained for amorphous/microcrystalline silicon tandem solar cells.  相似文献   

15.
Mn-doped zinc oxide (ZnO:Mn) thin films with low resistivity and relatively high transparency were firstly prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. Influence of film thickness on the properties of ZnO:Mn films was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. As the thickness increases from 144 to 479 nm, the crystallite size increases while the electrical resistivity decreases. However, as the thickness increases from 479 to 783 nm, the crystallite size decreases and the electrical resistivity increases. When film thickness is 479 nm, the deposited films have the lowest resistivity of 2.1 × 10− 4 Ω cm and a relatively high transmittance of above 84% in the visible range.  相似文献   

16.
Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide. In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200 °C, have resistivities in the low to mid 10− 4 Ω cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.  相似文献   

17.
Thermal post deposition treatments are applied to DC-sputtered aluminum-doped zinc oxide (ZnO:Al) films and lead to a significant improvement of the electrical properties. Protective layers of amorphous silicon are used to protect the films from degradation during the high temperature treatment. Annealing for 6 hours at 500 °C leads to a carrier mobility of 48 cm2/Vs at a carrier concentration of 5.5 · 1020 cm− 3. Furthermore, improvements in the optical as well as in the electrical properties are possible at the same time compared to the as-deposited film. This is achieved by carrying out two thermal treatments to the ZnO:Al film, one prior to the capping with the protective layer and one afterwards. A series of samples with different carrier concentrations allows us to draw conclusions on the specific electrical transport properties.  相似文献   

18.
Zinc oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown by pulsed laser deposition technique on corning glass substrate. The effect of indium concentration on the structural, morphological, optical and electrical properties of the film was studied. The films were oriented along c-direction with wurtzite structure and highly transparent with an average transmittance of more than 80% in the visible wavelength region. The energy band gap was found to decrease with increasing indium concentration. High transparency makes the films useful as optical windows while the high band gap values support the idea that the film could be a good candidate for optoelectronic devices. The value of resistivity observed to decrease initially with doping concentration and subsequently increases. IZO with 1% of indium showed the lowest resistivity of 2.41 × 10−2 Ω cm and large transmittance in the visible wavelength region. Especially 1% IZO thin film was observed to be a suitable transparent conducting oxide material to potentially replace indium tin oxide.  相似文献   

19.
A non-vacuum, solution-based method is investigated to deposit thin layers of Cu(In,Ga)Se2, which is the core component of CIGS thin film solar cells. The concept is based on paste coating of Cu, In, and Ga salt solution with an organic binder and a subsequent annealing of the paste in selenium atmosphere. Previous experiments with ethylcellulose as the binder resulted in photo conversion efficiencies up to 6.7%, although further improvements were hindered by a limited thickness of the CIGS layer and a residual carbon layer between the CIGS and metal back contact.In the present work, polymethyl methacrylate (PMMA) is tested as an alternative binder material, which theoretically should leave no char residues upon thermal degradation at temperatures higher than 350 °C. A series of pastes with different solvents are prepared and the resulting CIGS layers are investigated systematically by microscopy, SEM, EDX, XRF, and XRD. Absorber layers are processed into Mo/CIGS/CdS/ZnO solar cells and their I-V characteristics are measured. PMMA can be used as the organic binder alternative to cellulose and more complete evaporation of the organic matrix is achieved as compared to the reference cellulose-containing recipe. However, maximum solar cell efficiencies are limited to 3% because the obtained CIGS layers are porous and contain traces of parasitic oxide phases when heated above 330 °C in ambient atmosphere.  相似文献   

20.
We have studied the influence of growth temperature (TG) in the deposition of an indium tin oxide (ITO) transparent conducting oxide layer on Cu(In,Ga)Se2 (CIGS) thin-film solar cells. The ITO films were deposited on i-ZnO/glass and i-ZnO/CdS/CIGS/Mo/glass substrates using radio-frequency magnetron sputtering at various TG up to 350 °C. Both the resistivity of ITO and the interface quality of CdS/CIGS strongly depend on TG. For a TG ≤ 200 °C, a reduction in the series resistance enhanced the solar cell performance, while the p-n interface of the device was found to become deteriorated severely at TG > 200 °C. CIGS solar cells with ITO deposited at TG = 200 °C showed the best performance in terms of efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号