首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natively textured surface aluminum-doped zinc oxide (ZnO:Al) layers for thin film solar cells were directly deposited without any surface treatments via pulsed direct-current reactive magnetron sputtering on glass substrates. Such an in-situ texturing method for sputtered ZnO:Al thin films has the advantages of efficiently reducing production costs and dramatically saving time in photovoltaic industrial processing. High purity metallic Zn-Al (purity: 99.999%, Al 2.0 wt.%) target and oxygen (purity: 99.999%) were used as source materials. During the reactive sputtering process, the oxygen gas flow rate was controlled using plasma emission monitoring. The performance of the textured surface ZnO:Al transparent conductive oxides (TCOs) thin films can be modified by changing the number of deposition rounds (i.e. thin-film thicknesses). The initially milky ZnO:Al TCO thin films deposited at a substrate temperature of ~ 553 K exhibit rough crater-like surface morphology with high transparencies (T ~ 80-85% in visible range) and excellent electrical properties (ρ ~ 3.4 × 10− 4 Ω cm). Finally, the textured-surface ZnO:Al TCO thin films were preliminarily applied in pin-type silicon thin film solar cells.  相似文献   

2.
H. Zhu  J. Hüpkes  A. Gerber 《Thin solid films》2010,518(17):4997-5002
Mid-frequency magnetron sputtering of aluminum doped zinc oxide films (ZnO:Al) from tube ceramic targets has been investigated for silicon based thin film solar cell applications. The influence of working pressure on structural, electrical, and optical properties of sputtered ZnO:Al films was studied. ZnO:Al thin films with a minimum resistivity of 3.4 × 104 Ω cm, high mobility of 50 cm²/Vs, and high optical transmission close to 90% in visible spectrum region were achieved. The surface texture of ZnO:Al films after a chemical etching step was investigated. A gradual increase in feature sizes (diameter and depth) was observed with increasing sputter pressure. Silicon based thin film solar cells were prepared using the etched ZnO:Al films as front contacts. Energy conversion efficiencies of up to 10.2% were obtained for amorphous/microcrystalline silicon tandem solar cells.  相似文献   

3.
The optical and electrical properties of electron-irradiated Cu(In,Ga)Se2 (CIGS) solar cells and the thin films that composed the CIGS solar cell structure were investigated. The transmittance of indium tin oxide (ITO), ZnO:Al, ZnO:Ga, undoped ZnO, and CdS thin films did not change for a fluence of up to 1.5 × 1018 cm− 2. However, the resistivity of ZnO:Al and ZnO:Ga, which are generally used as window layers for CIGS solar cells, increased with increasing irradiation fluence. For CIGS thin films, the photoluminescence peak intensity due to Cu-related point defects, which do not significantly affect solar cell performance, increased with increasing electron irradiation. In CIGS solar cells, decreasing JSC and increasing Rs reflected the influence of irradiated ZnO:Al, and decreasing VOC and increasing Rsh mainly tended to reflect the pn-interface properties. These results may indicate that the surface ZnO:Al thin film and several heterojunctions tend to degrade easily by electron irradiation as compared with the bulk of semiconductor-composed solar cells.  相似文献   

4.
Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ~ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ~ 80%) and excellent electrical properties (Rs ~ 10 Ω at d ~ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density JSC = 10.62 mA/cm2, open-circuit voltage VOC = 0.93 V and fill factor = 64%).  相似文献   

5.
Heavily doped epitaxial ZnO:Al and Zn1−xMgxO:Al films were grown by radio frequency magnetron sputtering onto single crystalline substrates (sapphire, MgO, silicon) and characterized by structural and electrical measurements. It is the aim of this investigation to better understand the carrier transport and the doping mechanisms in heavily doped transparent conducting oxide (TCO) films. It was found that the crystallographic film quality determines only partly the mobilities and the carrier concentrations: ZnO:Al films on a-plane (110) sapphire and on MgO (100) exhibit the highest mobilities. The oxygen partial pressure during the deposition from ceramic targets is more important influencing especially the carrier concentration N of the films. Though the films grew epitaxially grain boundaries are still existent, which reduce the mobility due to electrical grain boundary barriers for N < 3 · 1020 cm− 3. From annealing experiments the role of point defects and dislocations for the carrier transport could be estimated. For carrier concentrations above 3 · 1020 cm− 3 ionized impurity scattering limits the mobility, which is in agreement with our earlier review [K. Ellmer, J. Phys. D: Appl. Phys. 34 (2001) 3097].  相似文献   

6.
The advantages of using indium zinc oxide (IZO) films instead of conventional Ga-doped zinc oxide (ZnO:Ga) films for Cu(In,Ga)Se2 (CIGS) solar cells are described. The electrical properties of IZO are independent of film thickness. IZO films have higher mobility (30-40 cm2/Vs) and lower resistivity (4-5 × 10− 4 Ω cm) compared to ZnO:Ga films deposited without intentional heating, because the number of grain boundaries in amorphous IZO films is small. The properties of a CIGS solar cell using IZO at the window layer were better than those obtained using a conventional ZnO:Ga at the window layer; moreover, the properties tended to be independent of thickness. These results indicate that use of IZO as a transparent conducting oxide layer is expected to increase the efficiency of CIGS solar cells.  相似文献   

7.
Transparent conducting Al and Y codoped zinc oxide (AZOY) thin films with high transparency and low resistivity were deposited by DC magnetron sputtering. The effects of substrate temperature on the structural, electrical and optical properties of AZOY thin films deposited on glass substrates have been investigated. X-ray diffraction spectra indicate that no diffraction peak of Al2O3 or Y2O3 except that of ZnO (0 0 2) is observed. The AZOY thin film prepared at substrate temperature of 250 °C has the optimal crystal quality inferring from FWHM of ZnO (0 0 2) diffraction peak, but the AZOY thin film deposited at 300 °C has the lowest resistivity of 3.6 × 10−4 Ω-cm, the highest mobility of 30.7 cm2 V−1 s−1 and the highest carrier concentration of 5.6 × 1020 cm−3. The films obtained have disorderly polyhedral surface morphology indicating possible application in thin film solar cell with good quality and high haze factor without the need of post-deposition etching.  相似文献   

8.
Thermal post deposition treatments are applied to DC-sputtered aluminum-doped zinc oxide (ZnO:Al) films and lead to a significant improvement of the electrical properties. Protective layers of amorphous silicon are used to protect the films from degradation during the high temperature treatment. Annealing for 6 hours at 500 °C leads to a carrier mobility of 48 cm2/Vs at a carrier concentration of 5.5 · 1020 cm− 3. Furthermore, improvements in the optical as well as in the electrical properties are possible at the same time compared to the as-deposited film. This is achieved by carrying out two thermal treatments to the ZnO:Al film, one prior to the capping with the protective layer and one afterwards. A series of samples with different carrier concentrations allows us to draw conclusions on the specific electrical transport properties.  相似文献   

9.
Cost efficient and large area deposition of superior quality Al2O3 doped zinc oxide (AZO) films is instrumental in many of its applications, including solar cell fabrication due to its numerous advantages over indium tin oxide (ITO) films. In this study, AZO films were prepared by a highly efficient rotating cylindrical direct current (DC) magnetron sputtering system using an AZO target, which has a target material utilization above 80%, on glass substrates in argon (Ar) ambient. A detailed analysis on the electrical, optical, and structural characteristics of AZO thin films was performed for the solar cell, as well as display applications. The properties of films were found to critically depend on deposition parameters, such as sputtering power, substrate temperature, working pressure, and film thickness. A low resistivity of ~ 5.5 × 10− 4 Ω cm was obtained for films deposited at 2 kW, keeping the pressure, substrate temperature and thickness constant at 3 mTorr, 230 °C and ~ 1000 nm respectively. This was due to an increase in carrier mobility and large grain size. Mobility is found to be controlled by ionized impurity scattering within the grains, since the mean free path of carriers is much smaller than the grain size of the films. The AZO films showed a high transparency of ~ 90% in the long wavelength region. Our results offer a cost-efficient AZO film deposition method that can fabricate films with significant low resistivity and high transmittance that can be applied in thin-film solar cells, as well as thin film transistor (TFT) and non-volatile memory (NVM).  相似文献   

10.
This work reports a method used to control Al doping of ZnO thin films deposited by high-power impulse magnetron sputtering of a pure Zn target in low-pressure Ar/O2 gas mixture. The method uses sputtering of an electrically negative biased aluminum electrode placed in the proximity of the negative glow of the magnetron discharge. Resonant laser absorption measurements of Al atom concentration in vapor phase and the X-ray Photoelectron Emission Spectroscopy measurements of Al concentration in the deposited ZnO:Al films confirm that the electrode biasing potential is the key parameter that controls the Al doping process. Optically transparent ZnO:Al films with resistivity as low as 3.6 × 10− 3 Ω × cm have been obtained at an optimum value of Al concentration of 1.5 at.%. It has been found that the film electrical conductivity is limited by the effect of decreasing of crystalline grain size in the films with the increased Al doping concentration.  相似文献   

11.
We have prepared aluminum-doped Zinc oxide (AZO) thin films on glass substrates by rf magnetron sputtering technique using ZnO ceramic target in pure argon gas with different aluminum concentrations. The bandgap of the ZnO films slightly widens with increase in Al content and the lowest sheet resistance of AZO films with Al concentration of 4.3 at.% was obtained. The effects of post-annealing treatment on structural, electrical and optical properties of the AZO thin films were investigated. Using AZO thin film with 4.3 at.% Al as the transparent substrate, a titanium dioxide based dye-sensitized solar cell was constructed and a solar to electrical energy conversion efficiency of 2.9% was achieved under AM 1.5 solar simulated sunlight.  相似文献   

12.
Highly doped indium-tin oxide films exhibit resistivities ρ as low as  1.2 × 10− 4 Ω cm, while for ZnO films resistivities in the range of 2 to 4 × 10− 4 Ω cm are reported. This difference is unexpected, if ionized impurity scattering would be dominant for carrier concentrations above 1020 cm− 3. By comparing the dependences of the effective Hall mobility on the carrier concentration of ZnO and ITO it is found that grain barriers limit the carrier mobility in ZnO for carrier concentrations as high as 2 × 1020 cm− 3, independently, if the films were grown on amorphous or single crystalline substrates. Depending on the deposition method, grain barrier trap densities between 1012 and 3 × 1013 cm− 2 were estimated for ZnO layers. Also, crystallographic defects seem to reduce the mobility for highly doped ZnO films. On the other hand, for ITO films such an influence of the grain barriers was not observed down to carrier concentrations of about 1018 cm− 3. Thus the grain barrier trap densities of ZnO and ITO are significantly different, which seems to be connected with the defect chemistry of the two oxides and especially with the piezoelectricity of zinc oxide.  相似文献   

13.
This study addresses the electrical and optical properties as well as the surface structure after wet-chemical etching of mid-frequency magnetron sputtered aluminium doped zinc oxide (ZnO:Al) films on glass substrates from rotatable ceramic targets. Etching of an as-deposited ZnO:Al film in acid leads to rough surfaces with various feature sizes. The influence of working pressure and substrate temperature on the surface topography after etching was investigated. It was found that the growth model which Kluth et al. applied to films sputtered in radio frequency mode from planar ceramic target can be transferred to film growth from tube target. Furthermore, the influence of Ar gas flow and discharge power on the film properties was investigated. We achieved low resistivity of about 5.4 × 10− 4 Ω·cm at high growth rates of 120 nm·m/min. Finally, surface textured ZnO:Al films were applied as substrates for microcrystalline silicon solar cells and high efficiencies of up to 8.49% were obtained.  相似文献   

14.
Aluminum doped ZnO thin films (ZnO:Al) deposited on flexible substrates are suitable to be used as transparent conductive oxide (TCO) thin films in solar cells because of the excellent optical and electrical properties. TPT films are a kind of composite materials and are usually used as encapsulation material of solar panels. In this paper, ZnO:Al film was firstly deposited on transparent TPT substrate by RF magnetron sputtering. The structural, optical, and electrical properties of the film were investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM), UV–visible spectrophotometer, as well as Hall Effect Measurement System. Results revealed that the obtained film had a hexagonal structure and a highly preferred orientation with the c-axis perpendicular to the substrate. Also, the film showed a high optical transmittance over 80% in the visible region and a resistivity of about 3.03 × 10? 1 Ω·cm.  相似文献   

15.
Sol-gel wet-chemical techniques were used to prepare ZnO, Al-ZnO (Al:Zn = 1:10 mol/mol) and Cu-ZnO (Cu:Zn = 1:10 mol/mol) thin films for characterization as functional layers for chemiresistive oxygen sensors. Cu and Al minor components influence the ZnO films' topography and their thermally induced chemical and structural evolution. As prepared (room temperature) films have the structure of layered basic zinc acetate, a lamellar ZnO precursor. Upon annealing at temperatures through 973 K, the films display similar chemical evolution patterns—temperatures above 773 K are needed to completely desorb solvents and decompose precursors. Cu facilitates c-axis orientation of the film as its structure matures, while Al slows its crystallization. Chemiresistive sensors, fabricated by coating thin film functional layers onto interdigitated electrode (IDE) transducers, were evaluated for their responses to oxygen at operating temperatures through 873 K. A ZnO/IDE sensor displays high sensitivity for O2 at an intermediate temperature, 673 K, reflecting an optimal balance between surface O2 coverage and carrier availability. At 1:10 mol/mol Cu:Zn and Al:Zn, the developing ZnO structure cannot accommodate all minor component atoms. Surplus atoms accumulate in independent phases at grain boundaries, contributing to both high base resistances (in N2) and low sensitivity to oxygen.  相似文献   

16.
Compared to zinc oxide grown (ZnO) on flat glass, rough etched glass substrates decrease the sheet resistance (Rsq) of zinc oxide layers grown on it. We explain this Rsq reduction from a higher thickness and an improved electron mobility for ZnO layers deposited on rough etched glass substrates. When using this etched glass substrate, we also obtain a large variety of surface texture by changing the thickness of the ZnO layer grown on it. This new combination of etched glass and ZnO layer shows improved light trapping potential compared to ZnO films grown on flat glass. With this new approach, Micromorph thin film silicon tandem solar cells with high total current densities (sum of the top and bottom cell current density) of up to 26.8 mA cm− 2 were fabricated.  相似文献   

17.
High-quality Al-doped zinc oxide (AZO) thin films have been deposited on quartz substrates by radio-frequency magnetron sputtering at room temperature for thin film solar cell applications as transparent conductive oxide (TCO) electrode layers. Effects of post-deposition annealing treatment in pure nitrogen and nitrogen/hydrogen atmosphere have been investigated. Annealing treatments were carried out from 300 °C to 600 °C for compatibility with typical optoelectronic device fabrication processes. A series of characterization techniques, including X-ray diffraction, scanning electron microscopy, Hall, optical transmission, and X-ray photoelectron spectroscopy has been employed to study these AZO materials. It was found that there were significant changes in crystallinity of the films, resistivity increased from 4.60 × 10− 4 to 4.66 × 10− 3 Ω cm and carrier concentration decreased from 8.68 × 1020 to 2.77 × 1020 cm− 3 when annealing in 400 °C pure nitrogen. Whereas there were no significant changes in electrical and optical properties of the AZO films when annealing in 300-500 °C nitrogen/hydrogen atmosphere, the electrical stability of the AZO films during the hydrogen treatment is attributed to both desorption of adsorbed oxygen from the grain boundaries and production of additional oxygen vacancies that act as donor centers in the films by removal of oxygen from the ZnO matrix. These results demonstrated that the AZO films are stably suited for TCO electrodes in display devices and solar cells.  相似文献   

18.
Aluminum doped ZnO (ZnO:Al) films were deposited using rf magnetron sputtering in the presence of hydrogen gas in the chamber. A comparative study of the films deposited with and without hydrogen was performed. The XPS studies indicated that the decrease in resistivity of ZnO:Al films with the introduction of hydrogen gas is attributed to the reduced adsorption of oxygen species in the film grain boundaries. The average percentage transmission in the visible region of the films was around 92–95% and band gap was found to be about in the range of 3.15–3.17 eV. The lowest resistivity of 1.8 × 10−4 Ω cm was achieved for the ZnO:Al film deposited with hydrogen.  相似文献   

19.
Sol-gel grown polycrystalline Al doped zinc oxide (AZO) thin films have been deposited on Si wafers, microscopy slide glass and fluorine doped tin oxide coated glass substrates using the spin coating technique. The atomic ratio of Al:Zn in the films is 0.2. From the X-ray diffraction investigations it is found that the preferential growth of (100) reflection peak has taken place in the 450, 550 and 600 °C annealed films. Scanning electron microscopic study has shown that the films contain well-defined grains arranged in a closely packed array. The resistivity of the 500 °C annealed film is measured to be 5 × 10 1 Ω cm. The films have exhibited excellent optical transmittance (~ 90%) in the 400-1100 nm wavelength range. Refractive indices (n = 1.9-1.95) of the films on Si wafer are independent of the annealing temperature. Thickness of the films produced at 4000 rpm is in the range of 58-62 nm. The refractive index and thickness of these films are nearly appropriate to cause destructive interference after reflection from front emitters of solar cells. These films have demonstrated a reflectivity value of about 3% at a wavelength of 700 nm. The AZO coated silicon solar cells possess Voc and Isc values of 573 mV and 237 mA, respectively.  相似文献   

20.
Polycrystalline Boron-doped ZnO films deposited by low pressure chemical vapor deposition technique are developed for their use as transparent contacts for thin-film silicon solar cells. The size of the columnar grains that constitute the ZnO films is related to their light scattering capability, which has a direct influence on the current generation in thin-film silicon solar cells. Furthermore, if the doping level of the ZnO films is kept below 1 × 1020 cm− 3, the electron mobility can be drastically enhanced by growing large grains, and the free carrier absorption is reduced. All these considerations have been taken in account to develop ZnO films finely optimized for the fabrication of microcrystalline thin-film silicon solar cells. These TCO allow the achievement of solar cell conversion efficiencies close to 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号