首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
稻壳基活性炭是一种具有多级孔道结构的电极材料,可以用于水系或有机电解液体系超级电容器,具有优良的比电容和功率特性。然而稻壳基活性炭用于超级电容器会出现严重的自放电问题。本文提出了一种简单的热处理稻壳基活性炭的改性方法,能够提高活性炭电极材料的电容值,并降低其自放电速率。在保持原有的多级孔结构基础上,增加了活性炭的介孔比例,减少了表面含氧官能团。改性前后的稻壳基活性炭材料组装的双电层超级电容器在0.5 A g~(-1)的电流密度下,质量比电容分别为116 F g~(-1)和147 F g~(-1),24 h自放电电压保持分别为75.2%和84.5%;在1.0 A g~(-1)条件下10 000圈恒流充放电循环后,电容保持率分别为85%和92%。  相似文献   

2.
高性能炭电极材料的制备和电化学性能研究   总被引:1,自引:0,他引:1  
以胡桃壳为前躯体,采用ZnCl2化学活化法制备炭电极材料,研究了活化剂与果壳的不同混合质量比例对炭材料性质的影响,用氮气吸附和傅立叶红外表征活性炭材料的比表面积、孔结构和表面性质,结果表明:活性炭材料表面存在着含氧官能团,为一种高微孔无定形炭材料;以制备的活性炭为电极材料,KOH为电解液构成超级电容器,采用循环伏安、恒流充放电等电化学方法研究了其电化学性能,结果表明:制备的活性炭电极材料表现出理想的电化学电容行为,比电容高达271.0F/g,漏电流和等效串联电阻分别只有0.25mA和0.39Ω,稳定性很高,循环充放电5000次后,电容量仍保持88%以上.  相似文献   

3.
孔结构对煤基活性炭电极材料电化学性能的影响(英文)   总被引:1,自引:1,他引:0  
以太西无烟煤为前驱体,NaOH为活化剂制备电化学电容器电极材料。采用N2吸附法及电化学测试对活性炭的孔结构和电化学性能进行了表征。在1mol/L(C2H5)4NBF4/碳酸丙烯酯有机电解液体系中,研究了孔结构对活性炭电极材料的电化学性能的影响。结果表明:以NaOH为活化剂可制备出比表面积943mol/L~2479mol/L、比电容57F/g~167F/g的活性炭电极材料。活性炭电极材料的比电容不仅取决比表面积,而且与活性炭的孔径分布有关。孔径为2nm~3nm的中孔的存在可以有效降低电解液的扩散阻力,提高电极材料比表面积的利用率,从而使电容器的电化学性能得到增强。  相似文献   

4.
以柚子皮为原料,采用预先炭化-KOH活化工艺制备生物质活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)、透射电镜(TEM)及X射线光电子能谱(XPS)等方法表征生物质活性炭的孔结构、表面形貌等微观结构和表面化学性质,利用恒流充放电、循环伏安、漏电流等手段探究生物质活性炭用作电极材料的电化学特性。研究表明:柚子皮经预先炭化-KOH活化处理可以制备出比表面积为1 347~2 269m~2/g,总孔容达0.642~1.283cm~3/g,中孔比例为23.83%~48.90%的高品质生物质活性炭。该生物质活性炭具有发达的比表面积、"大孔-中孔-微孔"三维贯通梯级孔结构,且表面富含羰基、酚羟基及羧基等含氧官能团,是一种比较理想的超级电容器电极材料。生物质活性炭电极材料在KOH电解液中具有优异的电容特性,在50mA/g电流密度下的比电容最高可达243F/g,5 000mA/g电流密度下的比电容仍可保持为175F/g,且具有优异的循环稳定性,循环1 000次后比电容保持率高达93.34%,漏电流仅为0.006 3mA。生物质活性炭优异的电化学特性与其发达的比表面积、"大孔-中孔-微孔"三维贯通梯级孔结构、合理的孔径分布及独特的富氧表面化学性质密切相关。  相似文献   

5.
以核桃壳为原料,经水热炭化-KOH活化制备活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)及X射线光电子能谱(XPS)等手段系统研究核桃壳活性炭的微观结构及表面化学性质,并利用恒流充放电、循环伏安等探讨其对应电极材料的电化学性能。研究表明,在碱碳比为3∶1、活化温度为800℃、活化时间为1h的条件下,核桃壳水热炭经KOH活化可制备出比表面积为1 236m2/g、总孔容为0.804cm3/g、中孔比例为38.3%的活性炭。该核桃壳活性炭用作电极材料在KOH电解液中具有优异的电化学特性,其在50mA/g电流密度下的比电容可达251F/g,5 000mA/g电流密度下的比电容为205F/g,且具有良好的循环稳定性,1 000次循环后比电容保持率达92.4%,是一种比较理想的超级电容器电极材料。核桃壳活性炭优异的电化学性能与其相互贯通的层次孔结构和独特的含氧表面密切相关。  相似文献   

6.
以NaOH为活化剂,采用两步热化学过程制备出木基活性炭。将所制活性炭用作以硫酸为电解液的超级电容器电极材料。探讨了合成条件对活性炭孔结构和电化学性能。结果表明,在微孔中形成双电层电容,介孔和大孔则实现离子运输。在高的活化温度或高碱炭比下,材料被过度活化,导致高的介孔、大孔孔容,这增加了电解液的吸收,从而降低质量比电容。最佳的活性炭合成条件为,活化温度:600℃,碱炭比:1.25。  相似文献   

7.
以茶籽壳为原料,以K2CO3作为活化剂,制备了新型活性炭。用氮气吸脱附法对活性炭的孔结构进行了分析。以活性炭为电极材料,6mol/L KOH溶液为电解液组装成超级电容器,利用恒电流充放电、循环伏安、交流阻抗等电化学测试方法研究其电化学性能。结果表明,活化后的茶籽壳炭,其比表面积高达1272m2/g,比电容高达150F/g,研究表明茶籽壳活性炭适用于超级电容器的电极活性材料。  相似文献   

8.
微波法煤基活性炭的制备及其电化学性能研究   总被引:1,自引:1,他引:0  
以内蒙古优质褐煤为原料,KOH为活化剂,采用微波加热活化法制备超级电容器用活性炭,利用低温氮气吸附及恒流充放电、循环伏安等方法测定活性炭的孔结构及其用作电极材料的电化学性能,并与日本商业化超级电容器用活性炭在结构及性能方面进行对比分析。结果表明,在碱炭比为3,微波活化时间为20min的条件下,可制备出比表面积达2593m2/g、总孔容达1.685cm3/g、孔径主要分布在0.5~10nm之间、中孔率达67.3%、平均孔径为2.61nm的优质活性炭。该活性炭用作超级电容器电极材料在3mol/L KOH电解液中具有优异的电化学性能,电流密度由50mA/g提高到10A/g时,其比电容由346F/g降低到273F/g,显示出良好的功率特性,经1000次循环后,比电容保持率为93.2%。与商业活性炭相比,微波法活性炭的性能更加优良。  相似文献   

9.
以高电容特性的CoNi-LDH作正极,活性炭作负极,6 mol/L KOH溶液为电解液构筑CoNi-LDH/AC非对称超级电容器。由于这两种材料在同一种电解液中发生可逆循环时对应的电化学电势范围不同,因此通过组合这两种电极材料可以有效地解决对称电容器工作电压低的问题。用循环伏安、恒电流充放电等测试方法对其电化学性能进行研究。结果表明,所组装非对称电容器在碱性水系电解液中,其工作电压可以达到1.5 V。通过比较它与基于两种电极材料对称电容器的能量密度-功率密度曲线可以看出,非对称电容器的性能有了很大提高,在功率密度为102.3 W·kg~(-1)时,其能量密度可以达到46.3 Wh·kg~(-1)。  相似文献   

10.
玉米芯活性炭的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
以玉米芯为原料,采用KOH活化法制备超级电容器用活性炭。利用低温氮气吸附及恒流充放电、循环伏安、交流阻抗等方法测定活性炭的孔结构及其用作电极材料的电化学性能。研究了脱灰对玉米芯活性炭孔结构及其电化学性能的影响。结果表明,在碱炭比3∶1、活化温度为800℃、活化时间为1h的条件下,可以制备出比表面积为2019m2/g、总孔容为1.084cm3/g、中孔率为15.6%的高比表面积活性炭。玉米芯经脱灰处理可以显著改善其所制活性炭的孔隙发达程度和中孔分布,脱灰玉米芯活性炭的比表面积、总孔容及中孔率分别可达2311 m2/g、1.246cm3/g和26.0%。玉米芯活性炭电极材料在3mol/L KOH的电解液中具有良好的电化学性能,其比电容量可达253F/g。脱灰玉米芯活性炭电极的比电容量更高(可达278F/g),比电容提高9.9%,且内阻更小。  相似文献   

11.
以碳化后的中间相沥青为前驱体、KOH为活化剂制备了超级电容器用活性炭电极材料,考察了KOH活化温度和碱碳比对所制备的超级电容器用活性炭电极材料的孔隙结构和电化学行为的影响,分析了不同工艺条件下所制备的活性炭电极材料的孔结构和电化学性能的影响因素。结果表明,于800℃活化温度和4∶1碱碳比条件下制备的活性炭电极在1mol/L(C2H5)4NBF4/PC时的最大比电容量可达103.2F/g,活性炭孔结构和比电容量的变化依赖于具体的处理工艺,中孔的含量对活性炭电极的比电容量会产生重要影响。  相似文献   

12.
郭晖  张记升  朱天星  代治宇 《材料导报》2016,30(2):24-27, 33
以核桃壳为原料,采用KOH活化法制备活性炭,并将其用作超级电容器电极材料。利用N2吸附和扫描电镜(SEM)表征活性炭的孔结构及表面形貌,系统研究碱炭比(KOH与核桃壳炭化料的质量比)对活性炭孔结构的影响,并采用恒流充放电及循环伏安等测定核桃壳活性炭电极材料在3mol/L KOH电解液中的电化学性能。结果表明,随着碱炭比的增大,活性炭的比表面积、总孔容及中孔比例先逐渐增大后稍有减小。当活化温度为800℃,活化时间为1h,碱炭比为4时,可制备出比表面积为2404m2/g,总孔容为1.344cm3/g,中孔比例为28.6%,孔径分布在0.7~3.0nm之间的高比表面积活性炭。该活性炭用作超级电容器电极材料具有良好的大电流放电特性和优异的循环性能,电流密度由50mA/g提高到5000mA/g时,其比电容由340F/g降低到288F/g,经1000次循环后,比电容保持率为93.4%。  相似文献   

13.
以丝瓜络作为前驱体,KOH为活化剂,在不同温度下炭化、活化制备活性炭,并将其作为超级电容器电极材料。采用N2吸附及电化学测试对活性炭的孔结构和电化学性能进行了表征,研究了炭化温度、碱炭比对活性炭电极材料孔结构和电化学性能的影响。结果表明:丝瓜络经过一步炭化即可制备出电化学性能优异的炭材料,经过KOH活化后比电容明显增加,在碱炭比为2时制备活性炭的比表面积、总孔容分别达到1549m2/g和0.901cm3/g,比电容达到228F/g,是未活化炭化物比电容的2.5倍,是一种理想的电极材料。活性炭作为电极材料,其比表面积存在一个最佳值,孔的容积、大小和形状对电解质离子的储存、扩散有着重要作用,对电化学性能有很大影响。  相似文献   

14.
首先利用水热法以葡萄糖为碳源合成炭微球,然后采用KOH再活化法将炭微球制备成分级多孔活性炭,最后测试并表征其作为超级电容器电极材料的电化学性能。结果表明:KOH再活化法具有扩孔和再造孔的双重作用,可获得具有较高的比表面积、合适的分级多孔结构和良好的石墨化程度的分级多孔活性炭材料;在Na2SO4中性电解液中,在电流密度为1 A/g时,分级多孔活性炭材料的比电容可达209 F/g,表现出优异的电化学性能。  相似文献   

15.
用高比表面积活性炭作为原料,酚醛树脂为粘结剂,在高温下粘结成型制备固体超级电容器用活性炭极板,用直流恒流循环实验考察活性炭极板电极的电化学性能.在活性炭中负载不同种类金属离子,考察金属离子的电化学性能对活性炭极板比电容的影响.实验发现负载廉价金属Mn、Co、Cu可以增加放电容量,负载金属Mn的电极在700℃炭化时比电容为265 F·g-1.  相似文献   

16.
将两款商业化石墨烯材料用于超级电容器中,考察材料的结构特性及应用方式对超级电容器性能的影响。结果表明:对于高比表面积石墨烯材料,因堆叠团聚问题导致极片过于致密,影响电解液渗透和有效利用面积,因此单独作为活性材料使用不能带来性能提升。而高电导率、比表面积适中的石墨烯材料,则适合作为活性炭电极的导电添加剂,可促进电荷传输和电解液离子扩散,提高电极比电容和功率特性;在0.5A/g电流密度下,该电极在有机电解液中的比电容值可达64.7F/g,即使在4A/g的高倍率条件下,性能相比低倍率也未出现明显下降,综合表现优于纯活性炭材料制作的电极。  相似文献   

17.
以石油焦为前驱体和KOH作为活化剂制备一种用于电化学电容器的高比表面积活性炭,采用廉价弱腐蚀性的Na_2SO_4电解液制备一种高电压的对称活性炭基水系电化学电容器,用N2吸附-脱附仪表征活性炭电极材料的孔结构参数,用循环伏安、恒流充放电和交流阻抗等电化学测试方法研究其电化学性能。研究结果表明,活性炭的比表面积为2855m~2/g,平均孔径为2.31nm;活性炭基水系电化学电容器在1.0mol/L Na_2SO_4电解液中扫描速率为2mV/s的比电容能达到188F/g,在功率密度为200W/kg时能量密度达到19.4Wh/kg,活性炭基水系电化学电容器在电压值为1.6V下展现了良好的循环性能,意味着Na_2SO_4电解液对开发能量密度高和环境友好的电化学电容器有着重要的意义。  相似文献   

18.
以酚醛树脂为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的活性炭材料.N_2吸附测试表明随着炭化温度降低,活性炭材料比表面积先增大后减小,孔容则不断增大.其中,550℃炭化样品与KOH反应活性最佳,可制得比表面积为2983m~2/g,总孔容为1.58cm~3/g,中孔孔容达到0.59cm~3/g的活性炭材料.采用直流充放电法、交流阻抗法和循环伏安法测定以上述多孔炭为电极材料的双电层电容器的电化学性能,结果表明,PF550活性炭材料电容性能最佳,在有机电解液中100mA/g充放电时,比电容达到160F/g,电流密度增大50倍容量保持率达到82%,显示出良好的功率特性;活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率.  相似文献   

19.
采用KOH活化高温裂解的菠菜叶,制得分级孔活性炭。低温氮气吸脱附表明利用KOH活化所制活性炭材料含有微孔、介孔和大孔,且比表面积高达2616m2/g。FE-SEM和FTIR表明,分级孔活性炭呈颗粒状,且表面含有富氧官能团。采用循环伏安(CV)、恒流充放电(GCD)和电化学阻抗谱(EIS)等测试技术,对分级孔活性炭进行电化学性能表征。在三电极测试体系中,分级孔活性炭在CV曲线中呈现良好矩形特征的双电层电容行为;在充放电电流密度为1A/g下,其比电容值为238 F/g。利用该分级孔活性炭所组装的水系对称双电层电容器,其电压可达到1.2 V,同时具有可观的能量密度,较高的放电倍率及良好的电化学充放电稳定性。  相似文献   

20.
超级电容器用活性炭电极材料的研究进展   总被引:3,自引:3,他引:0  
活性炭因具有制备简单、成本低、比表面积大、导电性好以及化学稳定性高等特点,作为超级电容器电极材料已得到广泛应用.论述了活性炭电极超级电容器的工作原理及活性炭物化性质对超级电容器电化学性能的影响,介绍了活性炭电极材料的最新研究进展,展望了其应用前景,指出寻找新炭源及活化技术、探索活性炭孔结构和表面性质的有效控制手段、开发活性炭复合材料等是该领域今后研究的重点方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号