首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用水解沉淀法合成了纳米Fe3O4粒子,并在其悬浮液中原位包覆聚苯胺,制备出纳米Fe3O4/聚苯胺复合粒子。研究了两种纳米粒子在交变磁场下的发热性能,对它们在定向集热治疗肿瘤中的应用前景进行了评价。纳米Fe3O4粒子的粒径为10~30nm,表面包覆聚苯胺后,复合粒子的粒径为30~50nm。纳米Fe3O4粒子的比饱和磁化强度为50.05Am2/kg,矫顽力为10.9kA/m;纳米Fe3O4/聚苯胺复合粒子的比饱和磁化强度为26.34Am2/kg,矫顽力为0。在10mg/mL的生理盐水悬浮液中,在外加交变磁场作用30min后,纳米Fe3O4粒子悬浮液的温度为63.6℃,纳米Fe3O4/聚苯胺悬浮液的温度为52.4℃,二者均达到了医学上定向集热治疗肿瘤用热籽的发热要求,是很有应用前景的医用纳米材料。   相似文献   

2.
通过雾化热分解-氧化五羰基铁(Fe(CO)5),在雾化液中添加三乙二醇(TREG)和三正辛基氧膦(TOPO),及在收集液中添加羧基化单甲醚聚乙二醇(MPEG—COOH)等有机修饰剂合成γ-Fe2O3纳米粒子。研究两段加热和单段加热对合成γ-Fe2O3纳米粒子的形貌、粒径、分散性的影响,同时分析温度对γ-Fe2O3纳米粒子结晶性、形貌及磁性能的影响。结果表明:合成的γ-Fe2O3纳米粒子结晶度随温度的升高而增加;MPEG—COOH已经修饰在γ-Fe2O3纳米粒子表面;在单段加热模式下温度为360,390,420℃和450℃时合成的γ-Fe2O3纳米粒子在300K下都具有超顺磁性,饱和磁化强度分别为30,37,41,71A·m2·kg-1;单段加热模式较两段加热模式合成的γ-Fe2O3纳米粒子分散性更好。  相似文献   

3.
采用原位法一步合成了α-Fe2O3和Fe2O3/Ag磁性核壳粒子,通过XRD,TEM和UV光谱研究了Fe2O3/Ag核壳纳米复合材料的结构。结果表明:一步合成了α-Fe2O3,纳米α-Fe2O3粒子表面被Ag层包覆,纳米α-Fe2O3核的平均粒径大约为20~30nm,Ag壳层厚度为10~15nm,形成了核壳结构的电磁复合纳米粒子。α-Fe2O3/Ag核壳纳米复合材料导电率为0.317S/cm。α-Fe2O3粒子具有超顺磁性,饱和磁化强度为1.28A.m2.kg-1,矫顽力为8.2784kA.m-1。α-Fe2O3/Ag核壳粒子饱和磁化强度为0.92A.m2.kg-1,其矫顽力与α-Fe2O3粒子基本一致。  相似文献   

4.
以硝酸铁为原料,三乙二醇(TEG)为溶剂,采用热分解法制备了γ-Fe2O3纳米粒子,通过X射线衍射fXRD)、差热-热重分析、N2吸附-脱附(BET)和磁性分析(VSM)等测试手段对制备的样品进行表征,并考察了硝酸铁浓度和反应时间对γ-Fe2O3晶粒尺寸及性能的影响,结果表明,硝酸铁在TEG中高温热分解后能够产生γ-Fe2O3纳米粒子,并且随着硝酸铁浓度和反应时间的增加,γ-Fe2O3纳米粒子的晶粒尺寸和饱和磁化强度都有增大的趋势。  相似文献   

5.
以正硅酸乙酯及铁盐为原料,通过溶胶-凝胶法制备γ-Fe2O3/SiO2纳米复合粉体。采用红外吸收光谱、X射线衍射仪、透射电镜及振动样品磁强计等对复合粉体进行表征。结果表明:以不同铁盐为前驱体得到不同晶型的Fe2O3;不同酸对磁性复合粉体的性能有重要影响:加硝酸时,γ-Fe2O3大小为15nm,其饱和磁化强度大;加入醋酸时得到的γ-Fe2O3颗粒为5nm,且粒度分布变窄,但其饱和磁化强度明显下降;并对γ-Fe2O3在SiO2中的合成机理进行了探讨。  相似文献   

6.
纳米γ-Fe_2O_3的室温固相反应工艺研究   总被引:1,自引:1,他引:1  
采用室温固相法合成了γ-Fe2O3的前驱体FeC2O4·2H2O及纳米γ-Fe2O3。以FeSO4·7H2O和H2C2O4·2H2O为原料,先得到了前驱体FeC2O4·2H2O,通过对反应机理的初步探讨,并研究其物质结构、分解过程和合适煅烧温度,最后在400℃下煅烧前驱体3h得到γ-Fe2O3纳米粒子。经热重(TG-DTA)、X射线衍射(XRD)和透射电镜(TEM)测试手段的分析,结果表明:室温固相法合成纳米γ-Fe2O3产物γ-Fe2O3纯净、粒子为纳米级且分布均匀。  相似文献   

7.
选用乙二醇(EG)为基液,运用两步法制得稳定性良好的γ-Fe2O3纳米流体。测量并研究了γ-Fe2O3纳米流体的导热系数和粘度等热输运性质。结果表明,γ-Fe2O3纳米粒子的加入使得纳米流体的导热系数较基液提高了,纳米流体的粘度在低温下较大,并随着温度的升高而减小,纳米流体在强化传热领域有着潜在的应用前景。  相似文献   

8.
微乳液体系制备Fe2B包覆纳米α-Fe及其性能研究   总被引:1,自引:0,他引:1  
采用油包水(W/O)的微乳液体系制备纳米α-Fe.XRD、TEM分析表明,纳米α-Fe被Fe2B所包覆,其粒度在20~100 nm;激光粒度分析表明,纳米α-Fe存在团聚现象,但粒度分布窄;TG-DSC分析表明,纳米α-Fe在>1100K时发生吸热的α-γ相变;磁强计检测表明,粉体具有铁磁性,其饱和磁化强度为1.14emu/g,剩余磁化强度为0.08emu/g,矫顽力为280Oe.  相似文献   

9.
纳米γ-Fe2O3粒子的制备及其性能研究   总被引:2,自引:0,他引:2  
以乙二醇作为前驱体,采用溶胶——凝胶法制备出了纳米γ-Fe2O3粒子,讨论了灼烧温度等对粒子大小、形貌、磁性等的影响,并采用红外光谱、X射线衍射光谱、透射电子显微镜、比表面分析仪及振动样品磁强计等对粒子的性能进行表征.结果表明:当烧结温度为450℃时,实验所得到的粒子的粒径最小,为5nm左右,磁性最强,比饱和磁化强度为65 emu.g-1,且分散较均匀.  相似文献   

10.
以FeCl3·6H2O和FeSO4·7H2O为铁源,采用化学共沉淀法制备纳米级Fe3O4磁颗粒,并用油酸钠对其进行表面包覆;将包覆后的Fe3O4磁颗粒在真空干燥箱中加热氧化,通过氧化时间的控制得到部分氧化的γ-Fe2O3/Fe3O4复合磁性颗粒以及完全氧化的γ-Fe2O3磁性颗粒;以硅油为载液制备出Fe3O4磁流体A、γ-Fe2O3磁流体B、部分氧化的γ-Fe2O3/Fe3O4复合磁流体C。研究发现Fe3O4磁颗粒尺寸分布较窄,尺寸的单分散性好,平均粒径在10nm左右,整体上呈现为类球形;Fe3O4磁颗粒部分和完全氧化制得的磁颗粒的粒径和形貌并无明显变化,粒径仍为10nm左右,整体上也呈现为类球形。测试结果表明,样品A、B和C的饱和磁化强度分别达到12.45,14.25和25.08A·m2/kg,且它们在外加磁场下均呈现出良好的各向异性。  相似文献   

11.
纳米γ-Fe2O3的制备及特性研究   总被引:4,自引:0,他引:4  
用溶胶-凝胶法在一定条件下制备了纯的纳米级γ-Fe2O3,并研究了 热稳定性。XRD结果表明,γ-Fe2O3在500℃温度下烧结后仍为γ-Fe2O3相,随着烧结温度的升高,晶型逐渐由γ相转变为α相;当烧结温度达到900℃时,γ-Fe2O3基本上全部转化为α-Fe2O3。  相似文献   

12.
γ-Fe2O3/SiO2纳米复合粉体的制备   总被引:2,自引:0,他引:2  
以硝酸铁和正硅酸乙酯分别作为氧化铁和SiO2的前驱体,通过溶胶-凝胶工艺制备了γ-Fe2O3/SiO2纳米复合粉体.若使用氯化铁为氧化铁前驱体,SiO2基体中则会生成α-Fe2O3.当干凝胶热处理温度较低时(T<400℃),复合粉体(硝酸铁为前驱体)以非晶态存在.当T达到600℃时,γ-Fe2O3粒子在SiO2基体中大量形成.随着热处理温度的进一步升高,粉体中开始有α-Fe2Oa杂质生成.使用盐酸做添加剂对复合粉体中γ-Fe2O3粒子大小及颗粒尺寸分布均有显著影响.  相似文献   

13.
以Ni(NO3)2·6H2O和Fe(NO3)3·9H2O为主要原料,在聚乙二醇(PEG)存在下,采用水热法制备了磁性NiFe2O4纳米粒子,用X射线衍射仪(XRD)、透射电子显微镜(TEM)和振动样品磁场计(VSM)等分析方法对样品进行了表征.结果表明:水热法合成的NiFe2O4纳米粒子为尖晶石结构,粒度分布均匀,为方形形貌,粒子直径范围在50~60nm;比饱和磁化强度为25.83emu/g,剩磁为6.167emu/g,矫顽力达85.87Oe.  相似文献   

14.
采用水热法以简单原料一步合成出Fe3O4/PMMA纳米复合材料,由于聚甲基丙烯酸甲酯(PMMA)的作用,Fe3O4由十几纳米部分聚集形成几百纳米的粒子,并在PMMA中分散较为均匀.复合粒子具有较高的饱和磁化强度,为超顺磁性。由合成的复合粒子制备得到的磁流变液具有较高的剪切屈服应力和储能模量,分别可达十几kPa和几MPa,其值随外加磁场的增大而增大。  相似文献   

15.
用化学共沉淀法制备了强磁性的Ni掺杂Fe3O4纳米磁粉。采用X射线衍射仪、电感耦合等离子发射光谱仪、傅立叶红外-拉曼光谱仪、透射电子显微镜、振动样品磁强计对掺杂Fe3O4纳米粒子进行了物相结构和磁性能表征。结果表明,掺杂Fe3O4磁粉的粒径在20nm左右,其比饱和磁化强度(σs)可达114emu/g,大大超过了一般Fe3O4纳米磁粉的比饱和磁化强度(σs),并进一步分析了掺杂Fe3O4纳米粒子的磁性能有较大提高的原因。  相似文献   

16.
采用水解法合成了聚乙烯吡咯烷酮(PVP)修饰的Fe2O3纳米材料(包括球形与纳米棒、球形与纳米线)和未经PVP修饰的菱形α-Fe2O3纳米材料.产物的紫外吸收边约为480nm,较体相材料明显"蓝移".PVP修饰的纳米Fe2O3的矫顽力、饱和磁化强度和剩余磁化强度较未修饰的产物均有提高.  相似文献   

17.
磁性壳聚糖纳米粒子可用于药物载体及废水处理吸附剂。以化学共沉淀法制备Fe3O4纳米粒子,壳聚糖先进行羧甲基化改性,再经碳二亚胺活化,包履在Fe3O4颗粒表面,透射电镜(TEM)表明,Fe3O4纳米粒子被CMC包履,粒径约10nm;X射线衍射(XRD)分析表明复合纳米粒子中磁性物质为Fe3O4;傅立叶红外光谱(FTIR)表明壳聚糖发生羧甲基反应;磁性测试表明,Fe3O4/CMC具有超顺磁性,饱和磁化强度25.73emu/g,且有良好的磁稳定性。  相似文献   

18.
Fe_3O_4磁流体制备及磁性能研究   总被引:2,自引:0,他引:2  
采用共沉淀法制备了3种不同粒径的Fe3O4纳米粒子,并分别将其分散在水中制备成磁流体.采用超导量子干涉仪分别测量了不同粒径磁粒子及其磁流体的磁性能.实验结果显示:粉末状Fe3O4粒子的比饱和磁化强度和矫顽力均随粒径的增加而增大;磁流体中的磁粒子比饱和磁化强度也随着粒径的增加而增大,但3种样品的矫顽力均为零,显示出超顺磁性;相同粒径的Fe3O4粒子,在磁流体中的比饱和磁化强度较粉末状态时为低.  相似文献   

19.
包淑娟  张校刚  刘献明 《功能材料》2004,35(1):108-110,113
采用化学共沉淀法制备磁基体(Fe3O4).煅烧使其转化为γ-Fe2O3。溶胶-凝胶法成功得到易于固液分离回收的磁载TiO2光催化荆TiO2/SiO2/γ-Fe2O3。用TEM和XRD进行形貌和物相表征。研究了催化剂对可溶性染料Orange-Ⅱ的降解性能。并探讨了煅烧温度、时间对活性的影响。结果表明:最佳煅烧温度为450℃。最佳煅烧时间为30min。这种情况下得到的磁载TiO2光催化剂TiO2/SiO2/γ-Fe2O3。在3次循环使用后降解率仍保持在95%以上。  相似文献   

20.
激光烧蚀细丝法制备γ-Fe2O3纳米粉体及其磁性研究   总被引:5,自引:1,他引:4  
王泽敏  刘勇  戢明  曾晓雁 《功能材料》2004,35(1):132-134
提出脉冲激光烧蚀细丝制备纳米粉末的新方法,设计并制作了相应的实验装置。以φ0.5mm的纯铁丝为原料,在N2和O2的混合反应气氛中获得了基本无硬团聚、粒度均匀的磁性γ-Fe2O3纳米粉末.平均粒径约为18nm。磁性测量表明,制备的γ-Fe2O3纳米粉末具有优良的磁性能,其矫顽力是常规化学液相法制备的针状γ-Fe2O3磁粉的2倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号