首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用放电等离子体烧结技术,制备了Sb/Al/Zn多掺杂Mg_2Si热电材料,利用粉末X射线衍射、霍尔效应和标准四探针电导率研究了Mg_2Si热电材料的电输运特性和热电性能。结果表明,Sb/Al/Zn多掺杂Mg_2Si热电材料具有良好的电输运和热电性能。采用放电等离子体烧结技术在880 K时,Sb0.5%Zn0.5%掺杂Mg_2Si热电材料具有最大热电优值为0.964,与PbTe基热电材料相当。根据电导率(σ)、塞贝克系数(S)和热导率(κ)的温度依赖性计算掺杂Mg_2Si热电材料在300~900 K的热电性能和热电图优值(ZT),同时根据霍尔系数确定掺杂Mg_2Si热电材料的电子浓度(N)。  相似文献   

2.
研究了在不同烧结温度下不同矿化剂对氧化铝基陶瓷型芯性能的影响,通过收缩率、室温抗弯强度、高温挠度的测试以及XRD和SEM分析表明:烧结温度为1250~1450℃时,同样粒度配比的两种型芯收缩率均随烧结温度的升高而逐渐增大;随着烧结温度的升高只添加氧化硅的型芯的室温抗弯强度呈先升高后降低的趋势,在1400℃时达最大值,只添加氧化钇的型芯的室温抗弯强度则随烧结温度的升高不断增大;随着温度的升高,只添加氧化硅的型芯的高温挠度逐渐减小,而只添加氧化钇的型芯虽有少许钇铝石榴石生成,但其高温挠度仍很大,只出现了少许的波动。因此只添加氧化硅的型芯性能优于只添加氧化钇的型芯的性能。  相似文献   

3.
以高岭土、滑石和工业氧化铝为矿物原料烧结制备了堇青石陶瓷,通过X射线衍射仪、扫描电镜、万能材料试验机和热膨胀仪等测试手段,研究了添加不同含量SiC对烧结堇青石陶瓷相组成和性能的影响,并比较了添加不同颗粒尺寸的SiC对烧结陶瓷强度的影响。试验表明,随着SiC添加量的增加,堇青石陶瓷的弯曲强度、致密度和热膨胀系数逐渐增大。...  相似文献   

4.
原位反应烧结法制备SiC多孔木材陶瓷   总被引:1,自引:0,他引:1  
以香杉木粉、硅粉和环氧树脂为原料,先低温制成木材陶瓷,然后利用高温原位反应烧结工艺制成了具有原木微观结构的SiC多孔木材陶瓷。TGA研究了木粉和环氧树脂的热分解行为,用XRD和SEM研究SiC多孔木材陶瓷的物相组成和微观结构,用阿基米德法测定SiC多孔木材陶瓷的显气孔率,系统研究了烧结温度和成分配比对SiC多孔木材陶瓷的摩擦学性能的影响。结果显示:SiC多孔木材陶瓷具有类似于原始木材的微观管胞结构;显气孔率随着烧结温度的升高而降低,但随着Si含量的升高而升高;在1600℃下制备的SiC多孔木材陶瓷具有良好的摩擦学性能,后期析出的碳颗粒可以有效降低磨损量。  相似文献   

5.
王旭东  周扬  袁怡 《功能材料》2022,53(1):1072-1076
采用反应烧结工艺,通过改变烧结温度,制备出了一系列不同烧结温度下(1 600,1 630,1 660和1 690℃)的SiC多孔陶瓷粉体。通过XRD、SEM、气孔测试、压缩强度测试和油水分离测试等,对SiC多孔陶瓷的物相结构、微观形貌、孔隙率、力学性能等进行了表征。结果表明,随着烧结温度的升高,SiO2的特征衍射峰强度逐渐升高,在1 690℃时SiO2的特征衍射峰强度最高;SiC多孔陶瓷的气孔随温度升高呈现出先降低后增加的趋势,在1 660℃时气孔率最低为32.1%;SEM分析发现,1 600和1 630℃下烧结的SiC多孔陶瓷中的小颗粒较多,且SiC多孔陶瓷的颗粒较为分散,随着烧结温度的升高,小颗粒相逐渐减少,SiC多孔陶瓷整体逐渐收缩紧密,晶粒逐渐长大。力学性能分析表明,随着烧结温度的升高,SiC多孔陶瓷的压缩强度先升高后轻微下降,在1 660℃时压缩强度达到了最大值25.6 MPa。油水分离测试发现,随着烧结温度的升高,SiC陶瓷的膜通量出现了先降低后有略微升高的趋势,截留率出现了先升高后轻微降低的趋势,在烧结温度为1 660℃时,膜通...  相似文献   

6.
刘云猛  陈永和 《材料导报》2011,(Z2):523-525
以高岭土、滑石和工业氧化铝为矿物原料烧结制备了堇青石陶瓷,通过X射线衍射仪、扫描电镜、万能材料试验机和热膨胀仪等测试手段,研究了添加不同含量SiC对烧结堇青石陶瓷相组成和性能的影响,并比较了添加不同颗粒尺寸的SiC对烧结陶瓷强度的影响。试验表明,随着SiC添加量的增加,堇青石陶瓷的弯曲强度、致密度和热膨胀系数逐渐增大。当添加SiC的质量分数为5%、粒径为5.0μm时,烧结堇青石陶瓷的强度较未添加时增大了41.9%,而热膨胀系数的增幅不大。  相似文献   

7.
刘静  李云凯  王丽阁 《功能材料》2024,(3):3113-3121
Cu2S具有较低的晶格热导率和窄禁带宽度,它热电性能优异、成本低廉且无毒等优点引起了热电材料相关研究领域的广泛关注。采用水热合成法与真空烧结法相结合的方式制备Cu2S基热电材料,通过物相、成分表征和热电性能测试等手段,研究稀土元素Tm掺杂对Cu2S基材料热电性能的影响规律,并采用第一性原理开展掺杂后Cu2S能带结构和态密度计算。研究结果表明,水热合成法可以获得Cu31S16粉体,在真空烧结过程中物相发生了转变,从原来的Cu31S16转变为Cu2S。掺杂Tm元素可显著提高Cu2S粉体的结晶性能,随着掺杂含量的增加,Cu2S团聚现象逐渐消失。Cu2S塞贝克系数随Tm掺杂量的增加有所提升,其中掺杂2%Tm的Cu2S在350℃处于相变温度,塞贝克系数达到峰值1589.71μV/K;随掺杂元素的增加和温度的升高,C...  相似文献   

8.
分别以Y2O3-Al2O3(YA)和Y2O3-MgO(YM)为烧结助剂,采用气压烧结工艺制备了Si3N4/SiC陶瓷,研究了两种不同的烧结助剂对陶瓷的力学和摩擦性能的影响。研究结果表明:添加不同种类的烧结助剂对制备陶瓷的相对密度、抗弯强度、断裂韧性、硬度、摩擦系数和磨损率影响很大;与添加烧结助剂YM相比较,添加烧结助剂YA的Si3N4/SiC陶瓷在烧结过程中表现出了更好的烧结性能,得到的陶瓷样品最终显示了更好的力学和摩擦性能,尤其是SiC添加量为20wt%的Si3N4/SiC陶瓷。这主要归因于烧结助剂YA的添加使Si3N4/SiC陶瓷呈现出了更高的相对密度,获得的晶粒长径比更小。  相似文献   

9.
锰硅化合物的制备及塞贝克效应   总被引:1,自引:0,他引:1  
过渡金属高锰硅化合物MnSi1.7作为半导体和难熔金属硅化物,具有热电应用的前景.尽管对Mn-Si1.7热电材料的研究已进行多年,但若要实现商业化应用,在制备和性能优化等方面还有很多问题需要解决.本文利用高温烧结的方法,在氮气氛保护下成功地制备出了锰硅块材化合物,研究了样品中所含的相结构及其所占比例(特别是MnSi1.7相)与烧结温度、保温时间的关系及它们对热电性能的影响.实验发现,Mn-Si1.7相所占的比例随着烧结温度的升高和保温时间的增加而增加,但材料的塞贝克系数在增大到某一饱和值后就不再增加了.  相似文献   

10.
SiC泡沫陶瓷/SiCp/Al混杂复合材料的导热性能   总被引:1,自引:0,他引:1  
运用挤压铸造法制备了SiC泡沫陶瓷/SiC颗粒/Al混杂复合材料,研究了温度和SiC泡沫陶瓷体积分数对复合材料热膨胀的影响.结果表明:随着温度的升高,复合材料的热容逐渐增大,热扩散系数、导热系数逐渐减小.随着增强体SiC体积分数的增大,复合材料的热容线性下降,热扩散系数和导热系数均非线性减小.由于混杂复合材料具有独特的复式双连续结构,复合材料的导热系数大于130W/(m·℃).  相似文献   

11.
1.IntroductionMuch attention has been paid to thermoelectric mate-rials for manufacturing thermoelectric energy conversiondevices by utilizing temperature change from waste heatand geothermal sources[1~5].The performance of ther-moelectric materials is usually expressed by the figure ofmerit z,z=α2σ/k,whereαis the Seebeck coefficient,σis the electrical conductivity and k is the thermal con-ductivity.The higher the z,the higher the effectivenessof a material for thermoelectric applications[…  相似文献   

12.
采用聚碳硅烷和SiC粉体为原料低压成型低温烧结制备SiC多孔陶瓷,研究了聚碳硅烷含量对SiC多孔陶瓷性能的影响。SEM分析表明,聚碳硅烷裂解产物将SiC颗粒粘结起来,多孔陶瓷具有相互连通的开孔结构。烧成SiC多孔陶瓷的孔隙孔径为单峰分布、分布窄,室温至800℃之间多孔陶瓷的平均热膨胀系数为4.2×10-6 K-1。随着聚碳硅烷含量的增大,SiC多孔陶瓷的孔隙率降低、三点弯折强度增大,当聚碳硅烷质量分数为10%时分别为44.3%和31.7MPa。  相似文献   

13.
Radial electric field effect (REFE) on the thermoelectric figure of merit and Seebeck coefficient S are studied for a coaxial cylindrical capacitor configuration on the basis of bipolar intrinsic semiconductors. Theoretical analysis of REFE nanowire was done based on Poisson's equation in cylindrical geometry with corresponding boundary conditions. Using Newton's method the radial variation of the local Seebeck coefficient, carrier concentration and others transport characteristics are calculated for the bipolar Bi2Te3 nanowires neglecting size quantization. The dependence of the thermoelectric parameters on the gate voltage is studied. It is shown that the existence of the transition bipolar–monopolar semiconductor, electric field, differences in carrier masses and mobility essentially affect the thermoelectric properties. The thermoelectric figure of merit can be significantly increased by REFE.  相似文献   

14.
通过化学共沉淀法制备了La0.67Sr0.33MnO3:Ag0.08 (LSMO:Ag0.08)多晶材料, 然后采用脉冲激光沉积(PLD)技术在LaAlO3 (LAO)倾斜衬底上制备了LSMO:Ag0.08薄膜。研究了衬底温度和生长氧压对薄膜结构、电输运特性及激光感生电压(LIV)效应的影响。结果表明: 当衬底温度为790℃、生长氧压为45 Pa时, 薄膜具有最大峰值电压(Up)、优值(Fm)和各向异性Seebeck系数(ΔS); 在优化的衬底温度和生长氧压条件下, 长程Jahn-Teller协变引起ΔS数值提高, 这是LIV信号增强的主要原因。  相似文献   

15.
采用SiC粉体与聚碳硅烷(PCS)为原料浇注成型低温烧结制备SiC多孔陶瓷,研究了PCS含量对SiC多孔陶瓷性能的影响。结果表明,PCS含量大于2wt%时可浇注成型,PCS经烧结后生成裂解产物将SiC颗粒粘结起来。所得SiC多孔陶瓷孔径呈单峰分布、孔径分布窄、热膨胀系数低、烧结过程中线收缩率小。随着PCS含量的增大烧成SiC多孔陶瓷的孔隙率降低,但强度显著提高。PCS含量为6wt%时多孔陶瓷的孔隙率、弯折强度和线收缩率分别为36.2%、33.8MPa和0.42%。  相似文献   

16.
选用粒径为7μm的SiC粉体,采用反应烧结工艺制备致密的SiC陶瓷材料,研究了反应烧结SiC陶瓷材料的物相组成、显微组织结构与力学性能及其断口形貌。结果表明:通过优化制备工艺,SiC陶瓷素坯中的SiC颗粒和纳米炭黑粉体分布均匀,且具有三维联通的孔隙结构,有良好的硅熔渗性能。反应烧结SiC陶瓷材料中的SiC含量高,游离硅含量少,密度可达3.01g.cm-3,抗弯强度达到410MPa,洛氏硬度达到95HRA,综合性能达到陶瓷机械密封件的技术要求。  相似文献   

17.
MAX相具有独特的层状晶体结构,不但具备常用铝基复合材料外加陶瓷颗粒的性能特征,同时具有可与石墨媲美的摩擦性能.本文以Al粉、Si粉和典型MAX相Ti_3SiC_2为原料,采用冷压成型-无压烧结方法制备了Ti_3SiC_2/Al-Si复合材料,并通过金相显微镜、X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等分析手段,研究了烧结温度、Si元素含量对复合材料组织与性能的影响.研究表明:随着烧结温度从500℃提高到700℃,复合材料致密度先上升后下降,摩擦系数先降低后上升,硬度逐渐增大至最大值并基本保持稳定;随着Si质量分数从0增加到20.7%,复合材料的致密度逐渐降低,硬度逐渐增大,摩擦系数先降低后增大,晶粒尺寸随之下降,12.5%Si晶粒最为细小;烧结温度为650℃,Si元素质量分数为12.5%的铝基复合材料具有最低的摩擦系数0.18,相应的硬度为62 HV,致密度为92.12%.XRD物相和扫描电镜组织分析表明,复合材料的主要相组成为Al、Ti_3SiC_2,及由界面反应产生的Al_4C_3和Al的氧化产物Al_2O_3.  相似文献   

18.
以Isobam作为胶凝剂, 聚甲基丙烯酸甲酯(PMMA)作为泡沫稳定剂和造孔剂, 结合固相烧结制备出具有多级孔结构的碳化硅陶瓷, 并研究了PMMA添加量、球磨机转速以及烧结温度对多孔陶瓷结构及性能的影响。结果表明: 当球磨机转速为220 r/min、烧结温度为2100℃时, 随着PMMA添加量由5wt%增加到20wt%, 发泡过程受到抑制, 但是泡沫的稳定性增强, 所得多孔陶瓷的气孔率在51.5%~72.8%之间, 压缩强度介于7.9~48.2 MPa之间; 当PMMA加入量为20wt%时, 随着球磨机转速由220 r/min增大到280 r/min, 加剧了浆料的发泡过程, 2100℃烧结所得多孔陶瓷的气孔率逐步增大, 气孔孔径变大; 当球磨机转速为220 r/min, PMMA加入量为20wt%时, 随着烧结温度的升高, 气孔率逐渐降低, 力学性能有所提高。  相似文献   

19.
We report, in this work, a theoretical study of electronic and transport (thermoelectric) properties of some superconductor nickel-based antiperovskite XNNi3 (X = Mg, Al, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Pt and Pb) using first-principles calculations with the full-potential linearized augmented plane wave (FPLAPW) method based on the density functional theory (DFT) as implemented in the WIEN2k package. Electronic properties are calculated and show that the studied materials are of metallic type which is in good agreement with experimental data. The Seebeck coefficient, thermal conductivity, electrical conductivity and figure of merit were reported. The results obtained show that the zinc (Zn) and silver (Ag) materials are characterized by a high value of the figure of merit at room temperature (300 K) which is respectively 0.86 and 1.02 in a p-type region. In the case of the transition metals, the maximum values of S increase in going from the Pt atom to the Zn atom and then decrease for the Cd atom. Furthermore, the Wiedemann–Franz law which states that the ratio of thermal to electrical conductivity for metals is constant is well verified in this work. The electric conductivity values are almost invariant with the temperature except for the case of MgNNi3 and AgNNi3 compounds in which it increases with T slightly. So, the superconducting materials based on silver and zinc are the best for the thermoelectric applications at room temperature due to the very important value of the factor of merit and the Seebeck coefficient obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号