首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
粉末微注射成形ZrO_2微结构表面质量控制   总被引:1,自引:1,他引:0       下载免费PDF全文
采用粉末微注射成形技术制得了二氧化锆陶瓷微结构件,注射成形最小微结构尺寸为Φ300μm×250μm.分析了微注射成形工艺参数、模具抽真空及硅模具对微结构表面质量的影响.实验结果表明在模具温度和注射压力较低时,相同工艺参数下随着微型腔尺寸的减小微结构顶端的表面平整度逐渐下降,提高模具温度和注射压力以及注射前对模具进行抽真空可以改善微结构表面平整度.另外,注射前的模具抽真空有助于减少微结构的表面气孔.亚微米陶瓷超细粉的使用明显改善了烧结后微结构的表面质量,其表面粗糙度值由烧结前的0.33μm降低为约0.28μm.  相似文献   

2.
研究了一种可用于微反射镜制作的光亮镀镍工艺.分析了微小面积电镀时出现边缘效应的问题,提出了增加牺牲结构的方法提高沉积速率并降低电镀边缘效应.通过脉冲微电镀实验,讨论了电流对电镀边缘效应的影响,同时分析了影响镀层表面质量的因素,得出了一组具有参考价值的电镀参数,电镀出了长620μm、宽500μm、厚2μm的微反射镜表面结构,经测量计算,该条件下,镍的生长速度约为0.1μm/min,表面平均粗糙度约为4.376nm.  相似文献   

3.
采用粉末微注射成形技术制作了ZrO2陶瓷微结构件,分析了其注射成形工艺,包括喂料配制、注射工艺及烧结工艺对微观组织的影响.实验结果表明,粉末体积分数为55%的生坯注射成形后在1 500℃下烧结2 h,采用排水法测得其微结构相对密度高达98.5%,采用纳米硬度分析法得到其微结构的显微硬度值为13.75 GPa.扫描电子显微镜(SEM)结果表明,提高模具温度和注射压力,有利于微结构的填充,进而改善微结构件的微观组织;高的烧结温度可以增加零件的致密度,但容易导致晶粒的过度长大和尺寸不均匀.激光共聚焦光学显微镜观察结果表明,使用亚微米级陶瓷超细粉得到的微结构具有良好的表面质量,其烧结前、后的表面粗糙度值分别为0.33μm和0.28μm.此外,提高粉末含量可以减小零件收缩率,从而有利于微结构的尺寸精度控制.  相似文献   

4.
利用粉末注射成形工艺制备碳化硼微孔喷嘴。研究了注射、脱脂和烧结工艺对碳化硼微孔喷嘴的微观形貌和成形质量的影响。结果表明,当模具温度为60℃、注射压力为100MPa、注射温度为175℃的情况下,微孔喷嘴得到良好的填充。脱脂后制品未发现裂纹和翘曲。随着烧结温度的升高,微孔喷嘴的致密度和线性收缩先增加后减小,表面粗糙度先减小后增加,在1950℃烧结后,微孔喷嘴的烧结性能和力学性能最好,致密度、线性收缩、维氏硬度和表面粗糙度值分别为97.1%,18.7%,3580HV和6.17μm。  相似文献   

5.
使用基于金属型的微精密铸造工艺成形了微米尺度的三维复杂的Zn-4Al合金微齿轮铸件,观察了微铸件显微组织的演变规律.结果表明,与常规铸件相比,微铸件表现出典型的快冷非平衡凝固特征,晶粒显著细化,最小的晶粒尺寸仅为常规铸件的1/20左右;而且共晶组织的形态发生转变,由平衡凝固时的层片状转变为棒状,初生相β-Zn的比例提高,其主要原因是微铸件尺寸引起的冷却速度的提高.  相似文献   

6.
使用基于金属型的微精密铸造工艺成形了微米尺度的三维复杂的Zn-4Al合金微齿轮铸件, 观察了微铸件显微组织的演变规律. 结果表明, 与常规铸件相比, 微铸件表现出典型的快冷非平衡凝固特征, 晶粒显著细化, 最小的晶粒尺寸仅为常规铸件的1/20左右; 而且共晶组织的形态发生转变, 由平衡凝固时的层片状转变为棒状, 初生相β-Zn的比例提高, 其主要原因是微铸件尺寸引起的冷却速度的提高.  相似文献   

7.
基于多功能加工平台的微细电解加工   总被引:3,自引:0,他引:3  
电解加工在加工过程中因难以控制加工形状而很少应用在微细加工领域,为了对微细电解加工可行性进行探索,设计了多功能微细加工平台,利用多功能微细加工平台可为微细电解加工在线制作电极,采用低加工电压、低浓度的钝化电解液、高频窄脉冲电源和高速旋转的微细电极,进行了微细电解加工实验,取得了很好的工艺效果,加工间隙是影响加工精度的关键因素,设计了一个加工间隙控制伺服系统,以保证微小的加工间隙,在厚为100μm的不锈钢薄片上用微细电解打孔加工出直径为65μm的微小孔,利用微细电解加工时电极无损耗,提出采用简单圆柱微细电极进行微细电解铣削,加工出较高精度的微结构,取得了较好的工艺效果,从而验证了该微细电解加工装置的微细加工能力和方法的可行性。  相似文献   

8.
一种三维金属微型腔的组合加工方法   总被引:2,自引:0,他引:2  
为了制作局部为三维结构的金属模具微型腔,实验研究了一种组合加工新工艺,即先用紫外线光刻和电铸成形(准LIGA)技术在模具基底上制作二维金属微型腔,再用微细电火花成形加工(EDM)技术对微型腔的局部进行修形,得到局部为三维结构的微型腔,电火花修形的位置根据微型腔结构的设计要求而定.以制作聚合物微流控芯片用的金属模具为试件,以微细电火花成形加工中影响工件表面粗糙度的因素分析为理论指导,应用该方法制作了局部侧壁倾斜的三维微型腔.根据测量结果,两边侧壁与水平方向的夹角分别为49.6°和46.4°,倾斜侧壁的表面粗糙度Rs为0.391μm.  相似文献   

9.
提出了利用金刚石涂层的金属线对光纤定位器件上微小孔抛光的新方法.为验证该方法,设计并制造了一个微型样机.该机器采用了振动系统以提高加工效率.为优化加工参数进行了系统的工艺研究.实验结果表明,采用这种抛光方法加工的微小内孔表面粗糙度可达到0.065μm.  相似文献   

10.
微尺度聚合物熔体流动具有明显的尺度效应,模具温度和注射速率是微注塑充填流动的关键影响因素。文中采用微细电火花铣削技术设计分别制造了一模八腔的带有200μm和300μm微孔的注塑模具。以聚丙烯(PP)进行单因素充模流动工艺实验,研究了模具温度和注射速率对直径为200μm和300μm微圆柱充填高度影响规律。结果表明,当模具温度为30℃和注射速率为60%时,直径200μm微圆柱孔的充填高度小于直径300μm微圆柱孔的充填高度,且Ⅰ型腔的微圆柱充填高度大于Ⅱ的充填高度。随着模具温度升高和注射速率增加,2种微孔充填高度差在减小,Ⅰ型腔和Ⅱ型腔之间的充填高度差值也在减小。可见,升高模具温度和增加注射速率可以减少微尺度效应对微圆柱孔充填高度的影响,同时,还可以减小流动不平衡程度。  相似文献   

11.
利用显微粒子追踪测速系统(Micro-PTV)对四种不同粒径(2μm、1μm、0.71μm、0.52μm)的颗粒在纯水中的布朗运动进行了实验研究.使用波长为532nm的连续激光器、电子倍增CCD(EMCCD)相机以及放大倍率为63倍的显微物镜得到颗粒图像.对原始图像进行处理,借助于Video Spot Tracker软件获得相邻两帧图像中示踪颗粒的单步位移,在此基础上计算颗粒在纯水中的实验扩散系数,分别为0.191μm2/s,0.391μm2/s,0.579μm2/s及0.746μm2/s.将计算结果与采用Stokes-Einstein公式计算的无限大空间单个颗粒理论扩散系数进行了比对,偏差在10%以内,实验值略小.实验结果能够正确反映微米(μm)/亚微米颗粒布朗运动的特征.  相似文献   

12.
本文主要研究了微米/纳米尺度的键合技术和键合强度,给出并发展了基于MEMS技术的微米/纳米键合分析模型.为提取微米/纳米键合面积的最大剪应力和压应力,设计、制备和测试了一系列单晶硅悬臂梁结构.并使用理论公式和ANSYS有限元模拟对实验结果进行了分析.键合强度可以分为扭转和剪压表征两部分.根据测试值可得,最大抗扭强度为1.9×109μN.μm,最大压应力为68.3 MPa.  相似文献   

13.
利用非硅微加工技术,在金属基底表面构建了由圆柱状金属镍组成的规则的微阵列结构,研究了微阵列的疏水性.利用正己烷溶解十八烷基三氯硅烷(OTS)配制成涂覆液,对微阵列进行低表面能物质涂覆.通过对比涂覆前后的静态超疏水性,研究了低表面能物质涂覆的作用.实验发现圆柱高度为5~30μm、直径为30~50μm、间距为15~50μm的微结构阵列在不涂覆OTS的前提下表现出了稳定的超疏水性.涂覆OTS虽然没有增加阵列结构的接触角,但是改善了微阵列在水流冲击下的疏水性.  相似文献   

14.
对一种被动式微型直接甲醇燃料电池进行了设计、制作及测试.利用微模具成型工艺,以ABS为基底材料制作了电池双极端板.采用200 μm厚的不锈钢薄片作为集电极,利用激光切割技术制作进料通道,并在集电极两侧溅射金层以防止电化学腐蚀.有效面积为0.49 cm2的膜电极则采用催化剂覆盖电解质膜的方法制备而成.测试结果表明,室温环境下(25℃)该被动式微型直接甲醇燃料电池在甲醇浓度为6 mol/L时最大功率密度可达22.14 mW/cm2.该性能对于被动式直接甲醇燃料电池的便携式高性能应用具有较大意义.  相似文献   

15.
为达到低成本、批量化制备微针阵列的目的,提出了一种分别制备微针针尖模具和微针立柱模具的微针模具制备方法.制备微针针尖硅模具是采用湿法刻蚀方法,SU-8微针的立柱部分则采用套刻工艺制备.以此模具为母版,采用聚二甲基硅氧烷(PDMS)二次转写技术获得PDMS二次母版.以PDMS母版为模具,分别用浇铸法制备了3种不同聚合物材料(左旋聚乳酸(PLLA),聚苯乙烯(PS),透明质酸(HA))的微针阵列;还以PDMS母版为模具,用电铸法制备了金属Ni微针阵列.该微针阵列的密度约为300根针/cm2.对制备的4种微针进行力学特性测试,实验结果表明,加工出的微针有足够的力学强度,可用于无痛注射.  相似文献   

16.
为解决微流体在微流控芯片上的单向流动,进而实现生化反应的片上系统,采用微机电系统(MEMS)技术加工出SU-8胶微型阀片.SU-8胶阀片具有弹性模量和弹性常数低、开启压力小、反向泄漏小、易于加工等特点.从理论上分析了不同厚度(10μm,15μm,20μm,25μm)的微型阀片在不同压力作用下的挠度和应力分布,在相同尺寸和压力下,SU-8微阀片的挠度与传统的硅阀片的挠度相比要大10倍左右.讨论了有阻尼作用下的谐振频率以及过流特性。可知阀臂和阀座的尺寸是影响阀片性能的主要因素.给出了加工工艺,测试了阀片的正反向过流性能,以水作为工作物质,得到3种厚度阀片的过流曲线,其最大正向流速达到7000μL/min.  相似文献   

17.
本文介绍了一种MEMS角速率传感器的设计、制作和测试.该传感器采用硅梁作为支撑和震动的结构.电磁力在驱动模式中被用来激励质量块做往复运动.驱动模式的频率被设计为5955.38Hz.针对另外两个轴向的角速率检测,设计检测模式的频率分别为6151.01Hz和6591Hz.质量块在驱动模式下的最大位移被设计为20μm.在器件的制作过程中使用了湿法刻蚀、电子柬蒸发、阳极键合、等离子体增强化学气相沉淀(PECVD)、lift—off、感应耦合等离子体活性离子蚀刻(ICP—RIE)等MEMS工艺.质量块的尺寸是1440μm×1400μm×33.6μm,硅梁的设计尺寸分别为10μm×562.5μm×33.6μm,10μm×532.5Ixm×33.6μm,芯片的外形尺寸是3127μm×3069μm.为了进行器件测试,搭建了真空测试平台.测试结果表明,驱动模式下器件的谐响应频率为9609Hz,使用磁电检测的模式其谐响应频率为9605Hz.器件中电容检测需要特殊的电路,该电路目前正在搭建中.分析发现实测结果与模拟仿真结果的差异在于加工过程中产生的误差.  相似文献   

18.
超精密飞刀切削是一种重要的超精密加工手段,安装大飞刀盘的超精密铣床能够加工大口径超精密光学元件,加工表面具有很高的面形精度和很低的表面粗糙度值.但是加工表面普遍存在中频微波纹(空间周期从100μm到300μm,幅值低于0.1μm),极大影响了光学元件的使用.超精密铣床的主轴旋转精度对加工工件影响很大,尤其是主轴轴线偏转会使安装在大飞刀盘外缘处的刀具产生很大位移.为此,建立了适用于空气静压轴承支撑的立式主轴角位移欧拉动力学方程,推导出方程解析解,得出主轴运动规律及其对表面中频微波纹的影响,并设计实验进行验证.最终给出了抑制中频微波纹的工程措施.  相似文献   

19.
微注塑成型中,聚合物熔体与微型腔壁面间的对流换热行为与常规注塑成型不同,对流换热系数也发生了变化。通过采用微模具和温度传感器,对聚丙烯(PP)、ABS和两种聚甲醛(POM)熔体,以不同注射速度填充厚度为0.510 mm和0.420 mm,表面粗糙度为0.062μm、0.393μm和0.695μm的不同微型腔时的模具温度分布进行测量,从而求得对流换热系数。结果表明,微注塑成型中对流换热系数,与聚合物材料热物理性质紧密相关,热物性参数值高的材料,对流换热系数也大;且随注射速度和型腔表面粗糙度的增加以及型腔厚度的减小而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号