首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
朱禹  赵力  高攀 《制冷学报》2007,28(5):15-19
针对非共沸工质可能出现的非完全冷凝现象,首先针对两种非共沸工质进行了实验研究,得到制热量和COP随冷凝器水流量逐渐增加的变化规律,证明非完全冷凝现象存在的可能性和普遍性;然后根据已经提出的此现象是否发生的理论判据(极限流量判别式)进行计算,并用实验测得极限流量对其进行验证;最后,分析了实验与理论计算的差异和原因,并提出完善非完全冷凝现象理论判据的改进方向,即考虑工质在冷凝器中的压降、工质和换热流体间的实际温差和实际换热过程中的各种外力。  相似文献   

2.
为了揭示非共沸混合工质在冷凝器内的换热特性,探明非共沸混合工质组分对制冷剂和换热流体间沿程温度的影响,通过建立冷凝器换热模型,对不同沸点差的二元环保型非共沸混合工质进行了理论分析.结果表明:由于非共沸混合工质比焓值与温度的非线性关系,换热流体间的沿程传热温差出现极值点;混合工质中富含低沸点组分时,冷凝器内部存在最小传热温差;反之,存在最大传热温差;混合工质沸点差增加,滑移温度的限制条件之差增大,窄点现象增强.  相似文献   

3.
分析了非共沸混合工质流动沸腾过程与纯工质不同的特性,使用相平衡和热焓计算相结合的方法,研究了非共沸混合工质流动过程中的热物性参数,状态参数和流动参数的计算获取,给出了详细的计算步骤及相关计算式,为准确获取非共沸混合工质在流道中各局部点的参数提供了一种切实可行的计算方法。  相似文献   

4.
提出了一种五级自动复叠制冷循环,根据不同的系统采用不同的制冷工质和不同的混合配比,可以获得不同的蒸发温度,分析了非共沸混合工质的组分选取原则并选取了组分,探讨了适用于自动复叠制冷系统混合工质计算的方法,根据要求选择了R22、R23、R14、R740和R728五种制冷工质作为系统循环工质,对混合工质的配比进行了模拟计算,得出了理论模拟最优配比并通过试验研究加以比较确定.  相似文献   

5.
本文提出采用非共沸工质的机械过冷跨临界CO2热泵供暖系统,并建立系统热力学模型,与采用纯质的机械过冷跨临界CO2热泵系统进行对比。结果表明:在环境温度为-12 ℃、用户供回水温度为65/40 ℃条件下,采用大温度滑移非共沸工质R1234ze(E)/R601(60/40)时,系统COP高达2.45,相对采用纯质最高提升13.82%。采用非共沸工质可有效降低系统排气压力并获得较大过冷度,减小节流不可逆损失。使用R290/R601(70/30)时,最优排气压力可降低27.85%。非共沸工质的使用可有效改善过冷过程的温度匹配,使用R1234ze(E)/R601(60/40)时系统?效率相对纯质最高提升14.09%。较大的温度滑移及合理的温焓曲线凹凸性是机械过冷CO2热泵系统非共沸工质选取的两个重要原则,推荐选用R1234ze(E)/R601(60/40)。  相似文献   

6.
以非共沸混合工质在蒸发器中沿程温度分布变化所导致传热不可逆熵增为目标函数,建立混合工质与冷媒水在蒸发器中的稳态换热模型;以换热温差最小值为基准,编程分析计算,得出二元混合工质R290/R600在不同组分比下的相对熵增,选取其中最小值对应组分比为最佳组分比.  相似文献   

7.
通过利用Helmholtz自由能状态方程,模拟计算6种非共沸混合工质的原奶速冷式系统制冷性能系数(COP),并与纯工质作比较,分析非共沸混合工质的优缺点。结果表明,非共沸混合工质的原奶速冷式系统COP普遍大于采用纯工质的原奶速冷式系统COP,R436A是6种混合工质中综合性能最好的。尽管采用非共沸混合工质可以有效地改善原奶速冷式系统传热温差过大的问题,但原奶速冷式系统的传热温差仍旧偏大。指出在将来的研究中若采用组合式原奶速冷式系统,可在某种程度克服这些问题,进而改善原奶速冷式系统的能源效率。  相似文献   

8.
根据泡露点的特性使用3种计算非共沸混合工质冷凝温度和蒸发温度的计算方法,建立应用于R236fa/R32混合工质制冷系统设计计算和性能测试的计算模型,并通过对该混合工质制冷系统的变组分试验,对制冷系统的性能测试数据进行对比分析。结果表明泡露点法不适用于大滑移温度混合工质的计算,中点法和平均值法均适用。相对于平均值法,采用中点法计算最准确,但计算过程最复杂。  相似文献   

9.
陈然  刘强  蒙冬玉 《发电技术》2020,41(2):190-197
有机朗肯循环(organic Rankine cycle,ORC)是利用中低温地热能(< 150℃)发电的主要途径,在实际运行中,非共沸工质往往会冷凝至过冷状态。分析了冷凝过冷度对非共沸工质ORC热力性能的影响,建立了ORC、内回热(internal heat exchanger,IHE)ORC的热力学模型,以净输出功最大为目标函数优化了工质的蒸发压力,并开展了系统的㶲分析。结果表明:过冷度影响了工质与冷源换热流体间的温度匹配特性,受夹点温差的限制,随着过冷度的增加,工质的冷凝压力上升;过冷度亦改变了预热器和蒸发器的热量分摊,随着过冷度的增加,最佳蒸发压力亦上升。混合工质异丁烷/异戊烷的质量配比为0.4:0.6时,净输出功受过冷度的影响最大,当过冷度为2℃时,净输出功下降了4.36%。IHE回收膨胀机排汽的余热,提高了预热器入口温度,可提高过冷ORC系统净输出功0.55%。过冷度增大了冷凝器的㶲损失;采用内回热冷凝器的㶲损失降低了24.7%。  相似文献   

10.
《制冷》2015,(4)
本文将复叠式制冷系统中制冷剂R22换成环保工质R410a,并且应用Ansys仿真模拟自动复叠制冷系统的蒸发温度为-110℃时非共沸混合工质R410a/R23/R14的换热情况,筛选出最大分离率对应的工质对及其配比,验证R410a代替R22的可行性。  相似文献   

11.
The flow and heat transfer characteristics of binary refrigerant mixtures in a heated horizontal tube were investigated numerically. The pressure drop, temperature profile, and heat transfer coefficient for non-azeotropic and near-azeotropic mixtures of different bulk compositions were obtained. It is found that the non-linear physical properties of the mixtures strongly affect the pressure drop characteristics. Both the fluid properties and mass transfer resistance are responsible for the heat transfer characteristics. The mass transfer resistance has a more significant influence on the nucleate boiling than the convective evaporation for non-azeotropic mixtures, while the resistance can be neglected for near-azeotropic mixtures.  相似文献   

12.
An investigation of the change in condenser overall heat transfer coefficient when replacing R22 with one of the three mixtures R407C, R404A and R410B was made, both experimentally and theoretically. Measurements have been carried out on a full-scale test plant consisting of a horizontal shell-side condenser. According to the measurements the decrease in overall heat transfer coefficient for the non-azeotropic mixture R407C was very large, up to 70% compared to R22, while for the near-azeotropic mixture R404A the decrease was less than 15%. Simulations of the condenser were done with a comprehensive computer program, calculating the condensation heat transfer with an approximate method including a correction for mass resistance. The calculation model was not able to predict this large degradation for the non-azeotropic mixture, while the predictions agreed rather well with the measurements for the pure fluid and the near-azeotropic mixtures.  相似文献   

13.
以R407C为工质的翅片式蒸发器结霜过程模拟   总被引:4,自引:0,他引:4  
翅片式蒸发器的结霜特性对于空气热源热泵的冬季运行十分关键。随着 对HCFCs替代的展开,一些非共沸制冷剂被建议为替代品。同现在使用的纯工质相比,这些非共沸制冷剂的温度滑移使和沿流动方向制冷剂的温度分布更加不均匀。在本文中,作者建立了翅片式蒸发器的分布参数模型,用以模拟结霜过程。传热与流动被认为是准稳态的。文中探讨了数值算法,并以某蒸发器为例进行了模拟。计算表明,结霜过程中空气量的改变明显,整个结霜过程存在一转折点,经过这点后流量急剧下降。R407C在蒸发过程中的温度滑移对霜层在蒸发器上的分布有重要影响。  相似文献   

14.
The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule–Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen–hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.The present study aims to assess the existing methods for prediction of flow boiling heat transfer coefficients. Many correlations are evaluated against available experimental data of flow boiling of refrigerant mixtures. Silver-Bell-Ghaly correlation and Granryd correlation are found to be more suitable to estimate local heat transfer coefficients. A modified Granryd correlation is recommended for further use.  相似文献   

15.
Condensing heat transfer for R114/R12 mixtures on horizontal finned tubes   总被引:1,自引:0,他引:1  
Two titanium tubes with external fins were tested in the horizontal orientation to determine heat transfer performance with R114, R12, and selected non-azeotropic mixtures of the two condensing on the outside surface. For the single-component situation, data were in excellent agreement with predictions from a modified Katz-Keller method, and little performance distinction was found between the tubes or between the pure refrigerants. All mixtures depressed performance below single-component levels, with even low second-component concentrations causing substantial degradation (up to 55% performance reduction for 5% R12). Gas chromatograph composition analyses of vapour from the condenser shell showed elevated concentrations of the more volatile component (R12), evidence that an added transport resistance contributed to the observed mixture performance reductions. If previously suggested benefits of mixtures in heat pump applications are to be realized, the associated condensers should be in a configuration so as to mitigate these performance penalties.  相似文献   

16.
In the past non-azeotropic binary refrigerants were frequently proposed for use in refrigeration plants on account of their favourable qualities regarding energy economy, capacity control and bridging of wide temperature ranges. Up to now, however, they did not succeed in industrial use, because these aspects were not prevalent for the exclusive methods of refrigeration by the conventional compression refrigeration cycles. It is demonstrated that non-azeotropic refrigerant mixtures provide considerable advantages for heat pump application in this direction.The possibilities of different refrigerant mixtures and their composition for use in heat pump cycles are especially regarded.First results of measurements concerning the application of those mixtures are given and discussed.  相似文献   

17.
Three methods for comparing cycle performance of working fluids, pure as well as non-azeotropic mixtures, are investigated for two applications and for two mixture pairs, HCFC22-CFC114 and HCFC22-HCFC142b, and their pure components. The methods differ in the way of calculating the heat exchange processes. They assume, respectively, equal minimum approach temperatures, equal mean temperature differences and equal heat transfer areas. Changes of coefficient of performance (COP) with composition are explained for all methods. It is shown that transport properties must be taken into account when making rigorous comparisons between working fluids. To predict the relations between fluids with high accuracy, one must use the method with equal heat transfer areas. By the method with equal mean temperature differences, the COP can be estimated with the same accuracy for mixtures as for pure fluids, and can be used for rough estimations of the COP level with different fluids. The method of equal minimum approach temperatures should be avoided for non-azeotropic mixtures.  相似文献   

18.
The effect of ultrasound on pool boiling heat transfer to mixtures of the refrigerants R23 and R134a has been investigated in a wide range of heat flux and saturation pressure. The enhancement of the heat transfer coefficient, which can be achieved by ultrasound, is much more pronounced for mixtures than for pure substances. It is, however, limited to rather small heat fluxes ( ). Especially remarkable is the fact, that the maximum influence of ultrasound on the heat transfer coefficient of the mixtures occurs at medium saturation pressures (p/pc ≈ 0.2); the effect is markedly less for higher and for lower saturation pressures. Obviously, the improvement of the heat transfer to mixtures is mainly caused by a decrease of the local saturation temperature near the heating wall, due to a better mixing in the liquid boundary. This explanation is supported by evaluating important parameters of bubble formation from high-speed photographs of the heating surface. It is further noticeable, that the well known hysteresis effect at the beginning of pool boiling is reduced to a great extent by exposure to ultrasound.  相似文献   

19.
A study on the prediction of heat transfer coefficient and pressure drop of refrigerant mixtures is reported. Heat transfer coefficients and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis assuming evaporation in horizontal tubes. Results indicate that nucleate boiling is suppressed at qualities greater than 20% for all mixtures, and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8–10% increase in heat transfer coefficients. Some mixtures with large volatility difference exhibit as much as 55% reduction compared to R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32%) and reduced mass flow rates (23%). Other mixtures with moderate volatility difference exhibit 20–30% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall heat transfer coefficient of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号