首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
应用静电力自组装的方法在掺硼金刚石薄膜(BDD)电极表面制备了纳米Au颗粒的单层膜,通过高温加热使纳米Au颗粒牢固修饰在BDD薄膜表面。采用SEM和XPS对其表面形貌进行了表征,纳米Au颗粒在BDD薄膜表面分散均匀,且不存在团聚现象。采用循环伏安法和电化学阻抗谱对其电化学性能进行了研究,并对多巴胺进行了检测。结果表明:修饰后的BDD电极界面间电子转移速率显著提高,且对多巴胺表现出良好的电催化性;氧化峰电位由0.52V减小为0.3V,且氧化峰电流为BDD电极的1.9倍,检测限为3.0×10-6 mol/L,且在多巴胺和尿酸的混合溶液中有很强的选择性,为生物分子的检测提供了新方法。  相似文献   

2.
采用静电力诱导自组装的方法将纳米金颗粒自组装到掺硼金刚石薄膜(BDD)电极表面,采用扫描电子显微镜和X射线光电能谱仪对其表面进行表征。对自组装在BDD电极表面的纳米金颗粒进行种子生长,并用于检测BDD电极之前无法检测的As~(3+)。采用溶出伏安法分别研究了富集时间、富集电位以及电解质溶液对As~(3+)检测的影响,选择出合适的检测参数完成对As~(3+)的定量检测。在盐酸为电解质的条件下,As~(3+)的浓度在小于3×10-6g/L时,As~(3+)的浓度与氧化峰电流表现出良好的线性关系,且最低检测限为0.3×10-6g/L。  相似文献   

3.
多思  朱宁 《功能材料》2011,42(4):624-627
通过热丝化学气相沉积(HFCVD)的方法,以钽(Ta)为衬底,三氧化二硼(Be2O3)为硼源,制备掺硼金刚石(BDD)薄膜.并采用共价键合法进一步制得壳聚糖修饰BDD薄膜电极.以此修饰电极为工作电极,在0.1mol/L,pH=4的磷酸氢二钠缓冲液中对Cu2+进行检测.实验表明,Cu2+在4.0×10-7~1.0×10-...  相似文献   

4.
采用电沉积法在过滤阴极真空电弧技术合成的掺磷四面体非晶碳(ta-C∶P)薄膜表面沉积纳米金团簇,制备纳米金修饰的掺磷非晶碳(Au/ta-C∶P)薄膜电极。利用X射线光电子能谱、拉曼光谱、扫描电子显微镜和电化学伏安法表征ta-C∶P和Au/ta-C∶P的微观结构、表面形貌和电化学行为。结果表明,-80V的脉冲偏压更利于磷原子进入碳的网络,并明显增加薄膜的电导率和电化学活性。纳米金团簇可增加ta-C∶P电极的有效面积,提高对铁氰化钾氧化还原反应的活性和电极可逆性,增强对多巴胺的催化活性。研究结果揭示ta-C∶P和Au/ta-C∶P薄膜在电分析及生物传感器方面的潜在应用。  相似文献   

5.
通过电化学和分子印迹技术,在金基底表面成功制备出基于三维纳米金膜修饰的双酚A(BPA)分子印迹传感器电极。扫描电镜、透射电镜表征和电化学分析结果表明,电化学沉积法可以使纳米金规则成粒,并均匀成膜;纳米金膜使电极表面具备三维结构;纳米金颗粒(AuNPs)可以在分子印迹聚合物(MIPs)中形成内镶嵌结构,使电极表面电导率显著增高。在对BPA的检测中,MIPs-AuNPs-Au电极的响应信号强度约是MIPs-Au电极的2.6倍,检测限为1.47×10-8mol/L。而且,MIPs-AuNPs-Au电极具有良好的选择性与稳定性。  相似文献   

6.
通过电聚合的方法构置了桑色素功能化碳纳米管修饰电极(morin/MWNTs/GCE),以多巴胺(DA)和抗坏血酸(AA)为模型化合物,考察了该修饰电极的电催化作用与机理.结果表明:DA与AA在Morin/MWNTs/GCE上的峰电流比裸电极、碳纳米管修饰电极明显增大,氧化峰电位差达210 mV,可实现多巴胺的灵敏测定.AA存在下,DA在1.0×10-7~5.0×10-4mol/L浓度范围内与峰电流有良好的线性关系,方法检出限2.0×10-8mol/L.  相似文献   

7.
制作钽衬底掺硼金刚石薄膜材料电极(Ta/BDD),并利用此薄膜材料电极为工作电极通过阴极溶出伏安法检测水中的苯胺.用热丝化学气相沉积(HFCVD)方法沉积Ta/BDD薄膜电极,扫描电镜和拉曼光谱表明电极具有良好的物理性质,循环扫描测试表明电极具有宽的电势窗口4.1V(-1.8~+2.3V vs SCE)和低背景电流,此特性对于电化学检测有着明显的优势.发现苯胺在氧化处理的Ta/BDD电极上有可逆的氧化还原峰,检测过程中未发生电极钝化现象.Ta/BDD电极在酸性介质中苯胺检测效果较明显,苯胺在1~40靘ol/L范围内浓度与溶出峰电流值有较好的线性关系.  相似文献   

8.
利用长链离子液体特殊的性质,用其固定HRP于Au/graphene电极表面(Nafion/HRP/[C10-mim+]Br-/Au/Gr/GCE)组装成H2O2传感器。用透射电镜来表征Au/氧化石墨烯的形貌,金纳米颗粒很均匀的分散在石墨烯表面,并不存在团聚现像。电化学技术检测Nafion/HRP/[C10-mim+]Br-/Au/Gr修饰电极对H2O2的响应情况,显示修饰电极对H2O2有很好的响应,在H2O2浓度2.0×10-6~1.2×10-3 mol/L的范围内,还原电流与浓度存在线性关系(R=0.997),检测限为3.0×10-7 mol/L;另外传感器具有很好的稳定性和选择性,为生物分子的检测提供新方法。  相似文献   

9.
采用纳米二氧化钛胶体和多巴胺作为修饰剂,通过多巴胺的氧化自聚将纳米二氧化钛颗粒沉积到聚丙烯微孔膜(MPPM)的表面.采用FTIR和SEM对膜进行了表征,发现修饰后膜表面多孔形态未发生变化,仅在膜表面均匀地负载着大量的纳米TiO_2颗粒.静态水接触角及纯水通量测试结果显示,修饰膜具有优异的润湿性,在0.10MPa下,MPPM的纯水通量为0,而经纳米TiO_2修饰后的膜纯水通量可稳定在4 625L/(m2·h)左右.蛋白质静态吸附与蛋白质溶液过滤研究结果表明,修饰膜具有良好的抗蛋白质污染性能,蛋白质溶液通量下降率仅为35%,且膜表面的蛋白质可用水清洗除去,通量恢复率达83%.  相似文献   

10.
采用离子注入的方法,将钴离子(Co)直接注入到氧化铟锡(ITO)导电玻璃电极表面,制得纳米钴修饰电极(Co/ITO)。通过循环伏安法(CV)、X-射线光电子能谱法(XPS)以及扫描电子显微镜(SEM)等方法对纳米钴修饰电极表面进行了表征。以Co/ITO为工作电极,在0.1 mol L-1Na OH溶液中,峰电流与谷胱甘肽(GSH)浓度在1.0×10-7mol·L-1~2.0×10-6mol·L-1之间呈线性关系,检出限为1.0×10-7mol·L-1。纳米钴修饰电极还体现了良好的稳定性和重现性,可用于实际样品中谷胱甘肽的检测。  相似文献   

11.
《中国测试》2016,(12):49-52
通过电沉积的方法,在玻碳电极表面上沉积铁氰化铈/石墨烯(Ce HCF/RGO)纳米复合材料。用扫描电子显微镜(SEM)对其形貌进行表征,发现其粒径大小均一。用循环伏安法(CV)研究水合肼在不同电极的电化学行为。结果表明,与RGO修饰电极(RGO/GCE)和铁氰化铈修饰电极(Ce HCF/GCE)相比,铁氰化铈/石墨烯复合物修饰电极对水合肼具有更好的电催化氧化性能。在一定条件下,它对水合肼响应的线性范围为2.87×10~(-7)~8.56×10~(-4)mol/L,检出限为8.5×10~(-8)mol/L。可用于水合肼的电化学传感检测。  相似文献   

12.
随着纳米催化剂的不断发展, 基于纳米金的多功能复合材料以其高效的催化性能而受到广泛关注。本研究采用简单可控的原位还原法, 制备了一种粒径均一、分散性良好、可快速磁分离且具有高催化活性与催化稳定性的磁性四氧化三铁-金纳米复合颗粒。首先用有机硅源-巯丙基三乙氧基硅烷(MPTES)水解得到的有机硅层来包覆粒径约100 nm的亲水四氧化三铁(Fe3O4)纳米颗粒, 再通过有机硅层表面的巯基来锚定原位还原生成的尺寸可控的金纳米颗粒(2 nm或6 nm), 得到内核为四氧化三铁、壳层为金纳米颗粒均匀修饰有机硅层的磁性氧化硅复合颗粒。利用透射电子显微镜(TEM)、动态光散射仪(DLS)和振动样品磁强计(VSM)等对所合成材料进行系统表征, 结果表明: 合成的磁性氧化硅复合颗粒核壳结构明显, 分散性良好, 粒径约为150 nm; 饱和磁强度为32.1 A•m2/kg, 具有良好的超顺磁特性。将其应用于4-硝基苯酚的催化还原, 转化频率(TOF)值高达70 s-1, 远高于文献报道值, 五次循环反应后的转化率依然高达98%, 证实其具备高催化活性及良好的循环催化性能。  相似文献   

13.
丙烯酸表面修饰法制备纳晶TiO2薄膜的研究   总被引:1,自引:0,他引:1  
采用sol—gel法制备纳晶TiO2薄膜,在溶胶的制备过程中加入丙烯酸对纳米TiO2胶体颗粒进行表面修饰。溶胶的透射电镜(TEM)分析表明,丙烯酸的表面修饰作用可以抑制在制备和陈放过程中胶体颗粒的团聚。采用原位程序升温,使用X射线衍射仪(XRD)对TiO2粉体由锐钛矿向金红石的转变过程(A→R)进行了考察,结果显示,晶粒的迅速生长和晶型的转变有着密切的联系;此外,丙烯酸的修饰作用能显著提高A→R的温度,且有助于抑制热处理过程中纳晶TiO2颗粒的团聚。TiO2薄膜的原子力显微照片(AFM)表明,丙烯酸修饰法制备的TiO2薄膜,膜层均匀连续,颗粒为纳米尺度。  相似文献   

14.
利用制备的氨基-β-环糊精-石墨烯-二茂铁(β-CD-NH2/GNs/Fc)复合膜修饰电极,研究了多巴胺(DA)的电化学行为。结果表明,该复合膜修饰电极在pH值=7.00的磷酸盐缓冲溶液(PBS)中对DA有良好的电催化性能,DA的氧化峰电流在0.1~100μmol/L浓度范围内呈良好的线性关系,检出限为8.5×10-8mol/L。结果表明该修饰电极具有较高的检测灵敏度,可用于实际样品的检测。  相似文献   

15.
为了检测食品中柠檬黄的含量,利用滴涂法和电化学还原法制备纳米TiO_2/还原石墨烯复合修饰玻碳电极(TiO_2-Er GO/GCE)。采用透射电子显微镜和X射线粉末衍射仪对TiO_2和TiO_2-GO两种修饰电极材料进行表征;通过循环伏安法观察了柠檬黄在不同电极上的电化学行为,并对检测条件如p H值、富集电位、富集时间进行了优化。实验结果表明:TiO_2-Er GO/GCE增大了电极的电化学活性面积,提高了柠檬黄的电化学氧化响应;最优的检测条件为p H值为3.7、富集电位为-0.20 V、富集时间为180 s;在最优的检测条件下,采用线性扫描伏安法检测柠檬黄的线性范围为2.0×10-8~2.0×10-5 mol/L,检测限为8.0×10-9 mol/L(信噪比为3)。  相似文献   

16.
采用直流磁控溅射法,以高纯铝(99.99%)为靶材,高纯氩气(99.999%)为起辉气体,在经机械抛光的单晶Si衬底上制备铝纳米颗粒薄膜。利用X射线衍射仪(XRD)、光学薄膜测厚仪、扫描电子显微镜(SEM)和四探针测试仪分别测试了铝纳米颗粒薄膜的晶相结构、薄膜厚度、表面形貌及电阻率。XRD衍射图谱表明此薄膜为面心立方的多晶结构,择优取向为Al(111)晶面。随溅射功率由30 W增至300 W,铝纳米颗粒薄膜的沉积速率由3.03 nm/min增加至20.03 nm/min;而随溅射压强由1 Pa增加至3 Pa,沉积速率由2.95 nm/min降低到1.66 nm/min。在溅射功率为150 W,溅射压强为1.0 Pa条件下制备的样品具有良好的晶粒分布。随溅射功率从80 W增大到160 W,样品电阻率由4.0×10-7Ω·m逐渐减小到1.9×10-7Ω·m;而随溅射压强从1 Pa增至3 Pa,样品电阻率由1.9×10-7Ω·m增加到7.1×10-7Ω·m。  相似文献   

17.
采用电化学聚合法制备了聚苯胺修饰的铂电极(PAN/Pt),并用循环伏安法(CV)研究了该电极对叶酸(FA)的电催化氧化性能。结果显示:FA在裸铂电极上的直接电化学氧化十分迟缓,无氧化峰出现,而在PAN/Pt修饰电极上0.561V处出现氧化峰,表明此电极对FA有很良好的电催化作用。另外,氧化峰电流与叶酸浓度在1×10-12 mol/L~1×10-6 mol/L范围内呈线性关系,检测限为1×10-11 mol/L。利用该电极测定市售叶酸片中的叶酸,获得令人满意的结果。  相似文献   

18.
硼掺杂金刚石薄膜(BDD)电极具有良好的电化学性能,是一种理想的电极材料。采用扫描电子显微镜、X射线衍射、拉曼光谱对制得的BDD电极的结构进行了表征。电极表面薄膜生长致密,晶体生长取向以(111)晶面为主,生长速率为2.8μm/h,晶格常数为3.5738。利用循环伏安法(CV)研究了BDD电极在铁氰化钾/亚铁氰化钾体系中氧化还原反应的可逆性和动力学特征。研究结果表明,在铁氰化钾/亚铁氰化钾的浓度为20mmol/L条件下,BDD电极的氧化还原峰电势差达到205.75mV,在溶液中电极的氧化还原反应属于准可逆反应,氧化峰电流与反应物浓度成正比,电极过程动力学是受扩散控制为主。  相似文献   

19.
采用直流反应磁控溅射技术在304不锈钢表面沉积TiC/a-C∶H纳米复合薄膜,并研究了TiC/a-C∶H纳米复合薄膜对不锈钢耐腐蚀性能的影响。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)观察,结果表明薄膜表面光滑且薄膜结构均匀致密。Raman光谱和XRD测试结果表明,薄膜具有纳米晶TiC镶嵌非晶碳基质的典型纳米复合微结构。通过测量薄膜的静态接触角分析薄膜的润湿性,不锈钢表面沉积TiC/a-C∶H纳米复合薄膜后疏水性能明显提高,水接触角高达98°。电化学腐蚀测试结果表明,不锈钢表面沉积TiC/a-C∶H纳米复合薄膜体系在质量分数为3.5%的NaCl溶液中自腐蚀电位约为-0.09V,腐蚀电流密度为2.43×10-8 A·cm-2,与无薄膜防护的裸露不锈钢相比,其耐腐蚀性能得到明显改善。  相似文献   

20.
采用直流磁控溅射法在SLG衬底上沉积Mo薄膜,并用XRD、SEM、四探针等对薄膜进行表征,研究了沉积时间对薄膜晶体结构、表面形貌以及电学性能的影响。研究发现,沉积时间能够调节Mo薄膜的择优取向。溅射时间较短(5~10min)时,沉积的Mo薄膜呈(110)择优取向。溅射时间超过15min后,薄膜呈现(211)取向,且(211)晶面择优程度随沉积时间的增加而提高。随着择优取向的改变,薄膜的表面形貌由三角形颗粒变为长条形颗粒,电阻率也发生相应变化,由3.92×10-5Ω·cm增加到4.27×10-5Ω·cm再降低,对应薄膜生长的晶带模型由晶带T型组织变为晶带2组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号