首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
目前无机纳米材料的研究主要集中于低维无机纳米材料的制备,如纳米颗粒、纳米纤维等,其制备方法已相当成熟,而对高维特殊形貌无机纳米材料的研究相对较少。近年来,具有特殊形貌的高维无机纳米材料因独特的结构和表面性质在催化、太阳能电池、传感器、微波吸收、医学等领域展现出优于低维纳米材料的性能,但制备出的材料种类少,形貌不均一,可控性较差。因此,研究者们致力于特殊形貌无机纳米材料生长机理的研究,为材料制备提供有效的理论依据。制备无机纳米材料的方法有微乳液法、溶胶-凝胶法、电化学法、水/溶剂热法等。其中水/溶剂热法制备的无机纳米材料具有晶粒发育完整、粒度分布均匀、颗粒之间少团聚、原料价格较便宜的优点,因此被广泛应用于特殊形貌无机纳米材料的制备。自组装技术作为超分子领域的新概念,在制备特殊形貌的材料中发挥着重要作用,其主要作用是将低维的纳米结构单元通过氢键、范德华力、静电力等非共价键作用力进行连接而组装成各种复杂的层级结构。现已通过自组装技术合成了片状、棒状、花状、海绵状、树枝状等特殊形貌无机纳米材料。其中片状材料的生长过程如下:第一步是纳米颗粒的奥斯特瓦尔德熟化过程,第二步是熟化的纳米颗粒定向附着自组装成片状材料。棒状材料的生长过程出现了两种情况,第一种与片状形成过程相同,第二种则是先形成片状,然后片状发生卷曲形成棒状材料,棒状材料再定向附着自组装成长径比不同的棒状材料。花状、海绵状、树枝状等复杂形貌的形成则是基于片状或棒状材料,通过氢键自组装而成。自组装过程会受到表面活性剂或模板剂、溶剂、沉淀剂、酸碱度等因素的影响。研究者们发现利用水热法制备纳米材料时,引入合适的表面活性剂或模板剂,能够促使低维纳米结构单元进行有序自组装而形成结晶度好、尺寸均匀的特殊形貌纳米材料。通过改变表面活性剂或模板剂、溶剂、沉淀剂的种类和剂量及酸碱度等因素,影响纳米颗粒的生长方向、生长速率及颗粒之间的作用力,进而控制产品的形貌和尺寸。本文对近年来国内外利用自组装技术制备特殊形貌无机纳米材料的研究成果进行了介绍,分析讨论了自组装过程的影响因素,并对自组装制备特殊形貌无机纳米材料的发展方向和应用前景进行了展望,以期为制备性能优越的特殊形貌纳米材料提供参考。  相似文献   

2.
稀土氧化物具有其独特的光、电等化学性质,在催化、发光、磁性等方面有很大的应用前景。如果将稀土氧化物制备成具有低的维数和高的比表面积的一维纳米管状,有可能增强其各方面的性能,它的开发和应用前景十分迷人。综述了稀土氧化物纳米管的制备方法,并介绍了稀土氧化物纳米管在催化、发光和磁性方面应用的进展,最后论述了还需要研究的问题和方向。  相似文献   

3.
Ag纳米材料具有独特的光学性、高导电性、高催化性和高抗菌性,在光电、催化及抗菌等领域中占有重要地位,而纳米Ag各种优异性能依赖于其尺寸、形貌和结构等.因此,纳米Ag可控制备的研究成为热点.按照粒子维度,将纳米Ag分为零维、一维和二维结构,对不同结构Ag纳米材料的合成方法及研究现状做简要概述,并总结Ag纳米材料的应用进展.  相似文献   

4.
李镇江  范炳玉  孟阿兰  张猛 《功能材料》2011,42(6):967-970,975
综述了近年来SiC一维、准一维纳米材料制备工艺的最新研究进展,重点介绍了模板生长法、化学气相沉积法、熔体生长法、碳热还原法和溶胶-凝胶法的工艺特点,并对不同工艺方法制备的SiC一维、准一维纳米材料的微观形貌、优异性能进行了简要概述,总结了现阶段SiC一维、准一维纳米材料制备工艺研究所面临的问题及发展前景.  相似文献   

5.
介绍了富勒烯C60一维、二维和三维纳米材料的晶态形貌,并对近几年来制备富勒烯C60纳米材料的合成和制备方法做了详细介绍。综述了富勒烯C60纳米材料在光学、电学、催化和生物医药等方面应用研究,并展望了富勒烯C60纳米材料的发展前景和趋势。  相似文献   

6.
高敏杰  孙磊  王治华  赵彦保 《材料导报》2012,26(11):45-50,78
银纳米材料具有许多特异性能,在电学、光学、催化等领域得到了广泛应用,其性能在很大程度上受到形貌、尺度、晶体结构和结晶度等因素的影响,因而研究银纳米材料形貌和尺度的可控制备具有十分重要的意义。从水体系和非水体系两方面综述了液相化学还原法制备银纳米材料的研究工作进展,详细论述了线(棒)形、片(盘)形、立方体形等特异形貌银纳米粒子的制备方法和实验条件;探讨了银纳米材料各向异性形貌的影响因素;提出了不同形貌银纳米晶的形成机理。分析指出晶种的晶型结构尤其是缺陷结构对晶体的最终形貌有很大影响;加入表面修饰剂是防止银纳米颗粒团聚和控制形貌的有效方法。提出了此类研究目前存在的主要问题,展望了其发展方向和趋势。  相似文献   

7.
清华大学的李亚栋课题组在纳米材料合成及功能化应用方面取得了一系列的突破。该研究组在低维纳米材料钒氧化物纳米带、不同结构银纳米线、硫化铅三维纳米线阵列、稀土磷酸盐纳米线、溴氧铋纳米带、硒化镍微球、可溶性二氧化钛纳米晶、氧化物空心微球控制合成,以及与晶面相关的催化、表面增强等物理化学现象的研究方面也取得了多项进展。  相似文献   

8.
张静  姚伟峰  张博  钮付涛  曾涛 《材料导报》2013,27(17):48-53
调控粒子的形貌和尺寸是改变贵金属纳米颗粒催化性能的一种重要方式,简要评述了贵金属纳米材料的几种形貌控制合成方法以及常见贵金属催化剂形貌控制合成的研究进展,并对贵金属纳米材料形貌控制工作在光催化研究领域的应用提出了设想。  相似文献   

9.
氮化硼二维纳米材料具有与石墨烯相当的强度、较宽的带隙、优良的化学稳定性和热稳定性,在绝缘、含氧、高温的条件下具有独特的应用价值,其制备技术及性能的研究是近年来材料科学领域研究的热点之一。剥离制备方法尤其是化学剥离法具有成本低、质量好、容易控制等优点,是制备氮化硼二维纳米材料的有效方法。本文详述了各种剥离方法制备氮化硼二维纳米材料的现状、存在的问题,指出深入研究剥离机理、开发新型高效剥离方法、制备稳定单层氮化硼应该是今后本领域的重点研究方向。  相似文献   

10.
低维半导体纳米材料由于具备许多特殊的电学及光学性能,近年来受到研究学者的广泛关注.综述了近期国内外低维Ⅳ族元素半导体纳米材料制备方法的研究进展,并对已经报道的制备方法进行了分类和总结,展望了低维元素半导体的研究前景.  相似文献   

11.
Ni2P纳米材料特殊的结构使其在催化领域显示出优异的活性和稳定性。作为催化材料,Ni2P的催化性能主要依赖于其结构、形貌及尺寸大小,实现Ni2P纳米材料的可控合成将是催化材料领域研究的热点。综述了Ni2P纳米材料的控制合成方法、合成机理及其在催化性能方面的研究进展,讨论了Ni2P纳米材料的应用前景,并从电子结构层次对Ni2P催化性能做了定性解释。Ni2P结构中由于P原子的掺入使得"d空穴"增多,费米能级附近的态密度增加,表现出类贵金属的特性,具有很好的催化性能。Ni2P纳米材料的催化脱氢性能将是继加氢性能之后又一个崭新的应用领域。  相似文献   

12.
经过近20年的发展,纳米科学的研究对象已从早期的Ⅱ-Ⅵ族半导体体系、碳簇和碳管体系拓展到了包括主族元素化合物、过渡金属及其化合物、贵金属及其合金,以及镧系元素化合物等更为丰富的体系,研究的方法也从早期的溶液相合成拓展到多相合成、模板法合成,以及仿生合成等复杂方法,研究目的也从单纯的材料纳米化转为以功能和器件为导向的合成和组装,并且更加注重材料的组成、结构、形貌和表界面的控制,以及在催化、信息、生命等领域的的应用。显然,无机合成化学已成为纳米材料和器件制备不可或缺的重要手段。业已证明,溶液法不仅具有纳米材料在合成中的可控性,而且具有工业化开发和生产前景。以近年来稀土功能材料体系的控制合成为例,阐述纳米或介观材料溶液法合成中有关前驱物选择、晶粒成核和生长控制、材料尺寸、结构、表面和晶面控制等方面的优势,同时讨论稀土功能纳米材料在相关领域中的应用。  相似文献   

13.
石墨烯的发现和成功制备引起了人们对二维材料的研究热潮。六方氮化硼(h-BN)薄膜作为类石墨烯结构的二维层状材料,也是当前的研究热点。介绍了h-BN及其相应的低维纳米结构,并概述了近期对二维BN纳米材料的形貌、合成、性能和应用的研究进展。目前对一维和二维纳米材料的研究表明,BN纳米材料具有诸多优异性能,包括高温稳定性、低介电常数、高力学性能、高热导率、高硬度和高耐腐蚀性,BN纳米材料系统已成为最具前景的非碳纳米系统,在不远的将来将有广泛的应用。  相似文献   

14.
ZnTe宽带隙半导体由于具有高的光学透明度、低电子亲和力和易于掺杂,目前在光电设备和光催化领域应用具有广泛的应用。大量研究表明,材料纳米化可以突破体相材料的应用限制,开发出更多优越的物理化学性能。然而,简单且可控的制备出结构稳定、尺寸均一的ZnTe纳米材料是这一材料进一步应用的技术前提。介绍了通过热蒸发、分子束外延、磁控溅射、水热/溶剂热、密闭空间升华和化学气相沉积等合成ZnTe纳米材料的方法,讨论了不同形貌的ZnTe纳米材料在各种领域的应用。  相似文献   

15.
纳米多孔金属由纳米尺度的孔隙和金属韧带组成,具有三维双连通的网络状结构,兼具纳米材料和金属材料的双重特性,在催化、传感和药物输送等领域具有广阔的应用前景。脱合金化法操作简单,工艺流程短,成本相对较低,是制备纳米多孔金属的常用方法。目前,利用脱合金化法制备的纳米多孔Pt合金因其对甲醇氧化和氧还原反应具有优异的催化活性而备受关注,有望在燃料电池等相关领域实现应用。近年,研究学者不断丰富纳米多孔Pt合金的合金体系,通过优化合金成分和脱合金化工艺对其结构和性能进行调控,发展出多种形态的纳米多孔Pt合金,系统调查了前驱体的结构和成分、脱合金工艺参数对纳米多孔Pt合金的组织结构、形貌和性能的影响,并对纳米多孔形成和优异性能的机理进行了广泛的研究。利用脱合金化法制备的纳米多孔Pt合金具有多种形态,如低维的纳米颗粒、纳米花、纳米线和薄膜以及三维的纳米多孔带材等。低维的纳米多孔Pt合金因其更大的比表面积和纳米尺寸效应而具有更为突出的催化活性,而三维的纳米多孔带材具有均匀的纳米多孔结构,且克服了低维合金易团聚的问题。通过调整前驱体合金的化学成分和组织结构,改变脱合金化工艺参数,以及对纳米多孔合金进行退火处...  相似文献   

16.
介绍了激光辅助制备低维纳米材料的几种方法,论述了激光法制备低维纳米材料的国内外研究进展.同时提出了该方法研究的重点并对其今后的发展趋势进行了展望.  相似文献   

17.
纳米材料由于具有特殊的光学、力学、磁学、电学、超导、催化等特性而被广泛应用于电子、机械装置、药物传输、催化剂等众多领域。直流电弧等离子体法是一种制备高纯度纳米材料的有效手段,通过在两电极之间的电弧放电产生高温,使反应室中的气体变为等离子体态,原材料蒸发分解成气态原子,过饱和的蒸汽流动到反应室中温度较低的部位,并重新成核生长成所需的纳米粒子。使用直流电弧等离子体法制备纳米材料具有操作简单、成本低、合成速度快、产物纯度高、环境友好等优点。在电弧法制备纳米材料的过程中,改变相关实验参数,会对产物的粒径、形貌等特性产生影响;特别是在制备碳纳米材料时,改变实验条件还会得到如碳纳米管、石墨烯、碳纳米角等不同形貌的碳纳米材料。因此,需要从纳米颗粒的生长机理入手,找到不同纳米材料的最佳合成条件,实现其可控制备。如今,电弧法制备纳米材料的研究重点已由单纯的制备方法研究发展到深入分析其机理与探究可控合成的工艺条件,从而实现粒径可控、颗粒分布均匀纳米材料的规模化制备。此外,电弧法相比其他方法具有独特的优点,探索用电弧法制备新型纳米材料也是目前研究的焦点。近年来,使用电弧法制备纳米材料取得了众多成果。在碳纳米材料领域,不但实现了富勒烯、碳纳米管的制备,而且实现了高品质单层石墨烯和碳纳米角的制备。在金属纳米材料领域,制备出了高品质的纳米银粉和镍粉等。此外,难熔金属由于熔点高,使用其他方法难以制备出相关种类的纳米材料。而电弧区温度可以达到104K,使用电弧法可制备出Mo、Cr、V、W等多种难熔金属的纳米材料。在陶瓷纳米材料领域,成功制备了SiC、TiC等高性能陶瓷纳米材料。实现电弧法可控制备纳米材料需要对纳米颗粒的形成及生长机理进行深入探究,相关工作也在不断推进。最近,研究者们使用数值模拟等辅助手段来模拟电弧过程,可以得到电弧区的温度、压力、速度分布情况,模拟的实验结果对解释纳米材料的生长机理起到非常重要的作用。本文主要介绍了使用直流电弧等离子体法制备碳纳米材料、金属纳米材料及陶瓷纳米材料的研究进展,并对纳米粒子的形成机理做了深入分析;阐述了电弧等离子法制备纳米材料存在的问题,并提出了相应的解决策略;最后,对电弧法制备纳米材料向着大规模、低成本可控制备的发展进行了展望。  相似文献   

18.
采用浮动催化法,利用卧式单一高温电阻炉,在以无水乙醇为碳源的反应体系中通过改变催化剂、反应气氛及流量、添加剂等实验参数合成了形貌不一的碳微纳米材料;采用SEM和Raman对产物进行了形貌观察和表征;比较了这些实验参数对浮动催化法制备碳纳米管的影响,并对其作用机理进行了简单分析.  相似文献   

19.
三维花状结构的纳米金属及金属化合物材料作为纳米材料的一个重要组成部分,由于其特殊的形貌和复杂的结构而具备许多块状或者低维纳米材料不具备的性质,在光、电、磁、催化和传感方面显示出巨大的应用前景.综述了近年来有关花状结构纳米金属及金属化合物的合成、性能及其应用,分别介绍了花状纳米金属及金属化合物的主要合成方法,阐述了各种花状纳米金属及金属化合物的电磁性质及其在相关领域的应用.  相似文献   

20.
刘增伟  杨希  孙杰  马凤国 《材料导报》2017,31(Z1):23-29
在众多可应用于气敏传感器的金属氧化物材料中,SnO_2半导体是应用范围最为广泛的金属氧化物之一。现今对于SnO_2基气敏材料的性能改良主要通过两种手段:一是掺杂法,通过与不同的材料复合,制备复合金属氧化物;二是SnO_2纳米材料的制备,控制制备不同形貌的纳米材料。总结了SnO_2纳米材料的制备方法,以及不同材料掺杂形成的SnO_2基气敏材料,详细描述了各种复合材料的制备方法、形貌特点和气敏性能,并展望了未来SnO_2气敏材料的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号