首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以铝为助剂结合放电等离子烧结制备Ti3SiC2   总被引:3,自引:0,他引:3  
以铝为助剂结合放电等离子烧结工艺,在较低温度下快速制备出高纯致密Ti3SiC2块体材料.掺加适量铝能加快Ti3SiC2的反应合成,提高制备材料的纯度,并促进Ti3SiC2晶体的生长和材料的快速烧结致密.在升温速率为80℃/min,z轴压力为30MPa时,材料制备的最佳温度为1200-1250℃.所制备材料经XBD、SEM和EDS分析表明不含TiC和SiC等杂质相,Ti3SiC2为5-25μm的板状结晶.  相似文献   

2.
用熔盐法和固相法合成SrBi4Ti4O15粉体,对其微观形貌进行了对比.熔盐法合成的粉体片状结构明显,合成温度低,比固相合成合成温度低50℃,一定程度上避免了Bi2O3的挥发.热压烧结的SrBi4Ti4O15陶瓷在(001)面取向非常明显,其压电性能也得到提高.  相似文献   

3.
采用复合碱媒介法(CHM),在合成BaMnO3和Ba0.5Sr0.5MnO3的基础上,以Sr(NO3)2、BaCO3以及MnO2和TiO2为原料,在200℃、24h的生长条件下,用20%的Sr离子替代20%的Ba离子,用50%的Ti离子替代50%的Mn离子成功合成了Ba0.8Sr0.2Ti0.5Mn0.5O3纳米晶体。采用XRD、SEM及EDS对产物的晶相、形貌和成分进行了分析,对Ba0.8Sr0.2Ti0.5Mn0.5O3制作的电极进行了气敏性质的测定。  相似文献   

4.
采用Ti、Si、TiC、金刚石磨料为原料,通过放电等离子烧结(SPS),制备了Ti3SiC2陶瓷结合剂金刚石材料.研究结果表明,Ti-Si-2TiC试样经SPS加热的过程中位移、位移率和真空度在1200℃时发生明显变化,表明试样发生了物理化学变化.XRD分析结果表明1200℃时试样发生化学反应生成了Ti3SiC2.随着温度升高,试样中Ti3SiC2含量逐渐增加.当烧结温度为1200℃、1300℃、1400℃和1500℃时,产物中Ti3SiC2含量分别为65.9%、79.97%、87.5%和90.1%.在Ti/Si/2TiC粉料中添加适量的金刚石5%和10%进行烧结,并未抑制Ti3SiC2的反应合成.SEM观察表明,金刚石与基体结合紧密,同时其表面生长着发育良好的Ti3SiC2板条状晶粒.提出了一种金刚石表面形成Ti3SiC2的机制,即金刚石表面的碳原子首先与周围的Ti反应生成TiC,然后TiC再与Ti-Si相发生化学反应,生成Ti3SiC2.  相似文献   

5.
以定量滤纸为生物模板制备了具有定量滤纸形貌的Na2CO3晶体,经过低温下的吸水和结晶过程合成了相变材料Na2CO3·7H2O。并借助扫描电子显微镜(SEM)、X-射线粉末衍射仪(XRD)和差示扫描量热仪(DSC)对产物的形貌、晶型以及热学性质进行了表征。同时,考察了掺杂NaCl对合成的相变材料Na2CO3·7H2O的热学性能的影响。结果表明:产物纯度高,且很好地遗传了模板(滤纸)的形貌;Na2CO3.7H2O表现出了良好的储能效果,相变热可达216.8J/g;掺杂NaCl(20mol%)可使Na2CO3.7H2O的相变温度降低5.5℃,而相变热仍然高达177.9J/g。  相似文献   

6.
本文综合介绍Ti3SiC2的最新研究进展.三元碳化物Ti3SiC2属于层状六方晶体结构,空间群为P63/mmC;它同时具有金属和陶瓷的优良性能,有良好的导电和导热能力,高弹性模量和低维氏显微硬度,在室温下可切削加工,在高温下能产生塑性变形,良好的高温热稳定性和优秀的抗氧化性能;应用CVD、SHS、HP/HIP等方法可制备该化合物,用HIP方法能制备高纯、致密的Ti3SiC2陶瓷;Ti3SiC2陶瓷材料自身有抵抗损伤的机理.  相似文献   

7.
三元层状碳化物Ti3SiC2的研究进展   总被引:11,自引:1,他引:10  
本文综合介绍Ti3SiC2的最新研究进展。三元碳化物Ti3SiC2属于层状六方晶体结构,空间群为P63/mmC;它同时具有金属和陶瓷的优良性能,有良好的导电和导热能力,高弹性模量和低维氏显微硬度,在室温下可切削加工,在高温下能产生塑性变形,良好的高温热稳定性和优秀的抗氧化性能;应用CVD、SHS、HP/HIP等方法可制备该化合物,用HIP方法能制备高纯、致密的Ti2SiC2陶瓷;Ti3SiC2陶瓷材料自身有抵抗损伤的机理。  相似文献   

8.
利用同步辐射白光形貌术和透射电子显微镜,对BiB3O6晶体的缺陷进行研究.靠近籽晶部位,可以观察到包藏、位错和生长扇面边界,而远离籽晶的位置,没有发现任何微观的缺陷.通过实验观察,孪晶和生长扇面边界可能是导致晶体中褐色区域的形成原因.提出了消除缺陷的方法.  相似文献   

9.
Al2O3/Ti3SiC2层状复合材料的制备与性能   总被引:4,自引:0,他引:4  
采用两种方法制备Al2O3/Ti3SiC2层状复合材料,一是原位-热压法,即Ti3SiC2是在层状材料的制备过程中同时被合成的;一是分步法,即制备过程分两步进行,首先制备出Ti3SiC2高纯粉,再采用热压法进行烧结制备层状材料。两种方法制备的Al2O3/Ti3SiC2层状复合材料强度保持在450MPa以上,断裂功达到1200-1560J/m^2,相对Al2O3块体材料提高十余倍。另外,不同的制备方法得到不同的组成和显微结构,决定了这两种Al2O3/Ti3SiC2层状复合材料性能的差异:前者强度较高韧性较低,后者强度较低而韧性较高。  相似文献   

10.
聂军武  徐国跃  蒋楠 《功能材料》2007,38(2):252-255
采用全溶液络合法合成了BaTiO3-CoFe2O4混合粉体,用X射线衍射仪对反应产物进行了表征,分析了不同热处理温度对粉体合成的影响.用X射线衍射仪、扫描电镜对由前述预制粉体烧成的磁电陶瓷进行了微观表征,观测到由不同热处理粉体烧成的陶瓷晶粒形貌显著不同,形成了可控晶粒的磁电耦合材料.以全溶液法合成的该磁电陶瓷中,两相晶体各自析出长大,同时CoFe2O4依附于BaTiO3上生长,两种晶体因共格而形成良好的相界面层,对获得较好的磁电耦合性能作用明显.  相似文献   

11.
1. IatroductionTitanium Silicon carbide (Ti3SiC2) is a novel ceramic material, which combines the merit of bothmetals and ceramics. It is a good thermal and electrical conductor, not susceptible to thermal shock, andeasy to machine with conventional tools. It is also oxidation resistant at high temperatures, and eXtremelyrefractory. Ti3SiCZ crystallizes in hexagonal structurewith a space group of p.,/mmc['], which is shown inFig.1. The unit cell of Ti3SiCZ consists of alternating layers …  相似文献   

12.
研究了不同烧结温度TiO2压敏陶瓷的显微结构、施主掺杂固溶度和电学性能。采用SEM和EDS测试了其显微结构和晶粒化学组成。随烧结温度增加,TiO2晶粒迅速长大,显微结构均匀致密,但过高的烧结温度将导致较多气孔。1350℃为比较合适的烧结温度,其晶粒大小为15μm左右。在施主掺杂浓度一定的条件下,施主掺杂离子Nb5+在TiO2晶粒中的固溶度、晶粒电子浓度和电导率随烧结温度上升而增加,晶粒电阻率随烧结温度上升而下降。以能谱中O为参考确定TiO2晶格数量计算得到的固溶度及其电学性能更符合实验测试结果。  相似文献   

13.
MAX相具有独特的层状晶体结构,不但具备常用铝基复合材料外加陶瓷颗粒的性能特征,同时具有可与石墨媲美的摩擦性能.本文以Al粉、Si粉和典型MAX相Ti_3SiC_2为原料,采用冷压成型-无压烧结方法制备了Ti_3SiC_2/Al-Si复合材料,并通过金相显微镜、X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等分析手段,研究了烧结温度、Si元素含量对复合材料组织与性能的影响.研究表明:随着烧结温度从500℃提高到700℃,复合材料致密度先上升后下降,摩擦系数先降低后上升,硬度逐渐增大至最大值并基本保持稳定;随着Si质量分数从0增加到20.7%,复合材料的致密度逐渐降低,硬度逐渐增大,摩擦系数先降低后增大,晶粒尺寸随之下降,12.5%Si晶粒最为细小;烧结温度为650℃,Si元素质量分数为12.5%的铝基复合材料具有最低的摩擦系数0.18,相应的硬度为62 HV,致密度为92.12%.XRD物相和扫描电镜组织分析表明,复合材料的主要相组成为Al、Ti_3SiC_2,及由界面反应产生的Al_4C_3和Al的氧化产物Al_2O_3.  相似文献   

14.
凝胶注模成型制备纳米复合多孔氮化硅陶瓷   总被引:7,自引:1,他引:6       下载免费PDF全文
采用凝胶注模成型两步法烧结工艺,利用纳米碳粉增强,成功地制备出了具有高强度、结构比较均匀并有较高气孔率的氮化硅多孔陶瓷。借助X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDS)、Archimedes法和三点弯曲法等方法对多孔氮化硅陶瓷的微观结构和基本力学性能进行了研究。结果表明:在适当工艺条件下可制成平均强度>100 MPa、气孔率>60%的多孔氮化硅陶瓷。SEM照片显示气孔是由长柱状β-Si3N4晶搭接而成的,气孔分布均匀。XRD图谱显示有SiC生成。发育良好的柱晶结构、均匀的气孔分布以及反应生成的SiC微晶是获得高性能的主要原因。   相似文献   

15.
The microstructure of liquid phase sintered SiC ceramics was characterised by means of high resolution transmission electron microscopy (HRTEM). The SiC ceramics were pressureless sintered with the additions of Al2O3 and Y2O3 at sintering temperatures of 1800 and 1950°C, respectively. At a sintering temperature of 1800°C the microstructure of the SiC ceramics has no crystallised secondary phase and the SiC grains are separated by an intergranular amorphous film. In contrast, in the case of the microstructure of SiC ceramics sintered at 1950°C a clean interface without any amorphous layer between the SiC grains was observed. The secondary phase is crystallised into the Y3Al5O12 phase and exhibits a clean interface between the SiC grains. An explanation for the existence or the absence of the intergranular glass films are given by an extended Clarke's model of the force balance of attractive van der Waals forces and repulsive steric forces. The chemical decomposition of the intergranular glass film at elevated temperature was considered.  相似文献   

16.
使用不同粒径的SiC和亚微米Al2O3添加剂制备重结晶烧结碳化硅并表征其物相组成、微观形貌、孔径分布和耐压性能,研究了亚微米Al2O3对重结晶碳化硅的作用机制。结果表明,在亚微米Al2O3作用下,重结晶碳化硅的烧结过程可分为液相烧结和重结晶烧结两个阶段。在液相烧结过程中高活性的亚微米Al2O3促进了液相的形成,使SiC的传质方式由扩散传质演变为粘性流动传质。在重结晶烧结温度SiC的传质以蒸发-凝聚为主,形成含铝气相并与SiC固溶促进了6H-SiC向4H-SiC晶型的转变。引入亚微米Al2O3后,重结晶碳化硅材料的孔径分布由单峰分布转变为多峰分布,其中孔径较小的特征峰对应重结晶烧结形成,而较大孔径的特征峰则来源于液相烧结的形成;同时,随着保温时间的延长SiC晶粒生长发育更为完全,由不规则颗粒状转变为较规则六方结构。但是,体积密度的下降、SiC晶粒尺寸不均一以及材料孔径的多峰分布使其耐压强度降低。  相似文献   

17.
利用溶胶-凝胶法制备CaCu3Ti4O12粉体,采用差热分析、X射线衍射、扫描电子显微镜等技术进行表征,并探讨CaCu3Ti4O12粉体的烧结特性及电性能。结果表明,干凝胶经750℃低温煅烧可获得粒径分布较窄、平均粒径为80~100 nm的CaCu3Ti4O12粉体。CaCu3Ti4O12陶瓷在1 000℃时实现致密烧结,比固相反应法制备的粉体烧结温度降低100~200℃,具有较宽的烧结温区。溶胶-凝胶法制备的陶瓷经1 050℃烧结2 h,获得优良的电性能,相对介电常数为20 190,介电损耗为0.022,非线性系数为4.530。  相似文献   

18.
利用扫描和透射电子显微镜及X-rays 衍射仪等, 对ZrO2 层状复合陶瓷的显微形貌特征、断裂相变量及晶体学位向关系进行了深入研究。研究结果表明, ZrO2 层状陶瓷由于界面压应力的作用, 抑制了烧结过程中晶粒的生长速度及冷却后四方相向单斜相的转变, 提高了可相变四方相的含量, 提高了断裂相变量, 改善了材料的力学性能, 但却没有改变四方相和单斜相之间的晶体学位向关系, 在层状ZrO2 陶瓷中, (100) m/ / (010) t 的晶体学位向关系仍然存在。  相似文献   

19.
层状Ti3SiC2陶瓷的组织结构及力学性能   总被引:19,自引:0,他引:19       下载免费PDF全文
利用热压烧结TiH2,Si和C粉获得了致密度大于98%的层状Ti3SiC2陶瓷。利用压痕法,在不同的载荷下测定了材料的维氏硬度, 发现其硬度值随载荷的增加而降低,在最大载荷30kg时,硬度值为4GPa。压痕对角线没有发现径向裂纹的出现。 这归因于多重能量吸收机制——颗粒的层裂、裂纹的扩展、颗粒的变形等。利用三点弯曲法和单边切口梁法测定了材料的强度和韧性分别为270MPa和6.8MPa·m1/2。Ti3SiC2材料的断口表现出明显的层状性质,大颗粒易于发生层裂和穿晶断裂,小颗粒易被拔出。当裂纹沿平行于Ti3SiC2基面的方向扩展造成颗粒的层裂,当裂纹沿垂直于基面的方向扩展时,裂纹穿过颗粒的同时,在颗粒内部发生偏转,使裂纹的扩展路径增加。裂纹的扩展路径类似人们根据仿生结构设计的层状复合材料。裂纹在颗粒内的多次偏转、裂纹钉扎以及颗粒的层裂和拔出等是材料韧性提高的主要原因。此外,在室温下得到的荷载-位移曲线,说明Ti3SiC2材料不象其它陶瓷材料的脆性断裂,而是具有金属一样的塑性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号