首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用熔融共混法与阻燃剂复配法制备了MWNTs/CMSs/PET复合材料。通过扫描电镜(SEM)、极限氧指数法(LOI)、UL94垂直燃烧法、锥形量热仪(Cone)及热重红外联用分析仪(TG-IR)表征了样品的结构、阻燃性能及热降解行为,分析了MWNTs/CMSs阻燃PET材料的阻燃机理。结果表明,当MWNTs/CMSs添加量为1%(质量分数),MWNTs与CMSs质量比为1:1/2时,二者可有机地结合为一个整体,有利于MWNTs/CMSs在PET基材中发挥协同阻燃作用。与纯PET及CMSs/PET相比,MWNTs/CMSs/PET能有效降低火灾危险性。MWNTs/CMSs阻燃PET主要是通过MWNT与CMSs两者的协同作用延缓PET热裂解行为,一方面MWNTs在其燃烧时可在PET表面形成致密的网络状炭层结构,减少了熔滴的产生;另一方面CMSs其燃烧时在PET表面形成湍流炭,以此阻止氧气和热量进入PET内部,同时释放出不燃气体CO2以降低周围环境中可燃气体的浓度,阻止燃烧的继续进行,最终实现了MWNTs/CMSs/PET材料的良好阻燃。  相似文献   

2.
先用酸氧化法修饰碳微球(CMSs)的表面,再用化学合成法将苯胺(An)接枝在CMSs上制备CMSs-An复合物,最后用熔融共混法制备了CMSs-An/PET复合材料。采用扫描电镜(SEM)、红外光谱仪(FTIR)、热重(TG)、氧指数仪和垂直燃烧仪等手段对其形貌结构、分散性、热稳定性能、阻燃性能和力学性能进行了表征。结果表明,与原始CMSs相比,苯胺修饰后的CMSs-An在PET基体中的分散性提高了,使CMSs-An/PET的抗拉强度比CMSs/PET提高了20.8%;与纯PET相比,CMSsAn/PET复合材料的热稳定性明显提高,其极限氧指数提高了7.5达到29.2,垂直燃烧级别由V-2级上升到V-0级。  相似文献   

3.
宋英豪  薛宝霞  彭云  杨雅茹  白洁  牛梅 《材料导报》2018,32(22):3961-3966
结合阻燃剂复配技术,以碳微球(CMSs)与聚磷酸铵(APP)为添加材料,通过熔融共混法制备了CMSs/APP/PET复合材料。采用锥形量热仪(CONE)、极限氧指数(LOI)、垂直燃烧测试(UL-94)、扫描电镜(SEM)等对CMSs/APP/PET复合材料的阻燃性能进行了研究,并对CMSs与APP的配比及含量进行优化。结果表明,单独添加3%CMSs可使PET的LOI值提高到25.1%,释热速率峰值(PHRR)从513.22 kW/m2下降到382.51 kW/m2,但该复合材料不能通过UL-94的测试;单独添加3%APP仅可使PET的LOI值提高到21.9%,但其UL-94可达到V-0级。通过探讨不同配比的CMSs/APP对PET阻燃性能的研究发现,在CMSs/APP的添加量为2%,质量比为1∶2时,CMSs/APP/PET复合材料的阻燃效应最佳,其LOI值可达27.5%, PHRR值下降了45.4%,总产烟量(TSP)由14.4 m2下降到12.4 m2,残炭量由13.2%增加到17.3%,且UL-94可达到V-0级,可满足PET在不同燃烧方向的阻燃要求。  相似文献   

4.
以碳微球(CMSs)、氢氧化钠和氯化镁为原料,采用液相沉积法制备了Mg(OH)_2/CMSs复合阻燃材料,通过场发射扫描电镜(SEM)和X射线衍射仪(XRD)分析了材料的微观形貌和结构;并结合Mg(OH)_2/CMSs复合阻燃材料与聚对苯二甲酸乙二醇酯(PET)共混制备Mg(OH)_2/CMSs/PET复合材料,通过数显氧指数测试仪分析其阻燃性能。结果表明,通过液相沉积法Mg(OH)_2包覆在CMSs表面,且包覆效果较好;Mg(OH)_2/CMSs复合阻燃材料燃烧时分解生成的氧化镁(MgO)、水和残余炭层,使得Mg(OH)_2/CMSs/PET复合材料的极限氧指数由PET的21.0%增加到27.5%,并具有优良的抑烟性和抗熔滴性,提高了PET材料的阻燃性能。  相似文献   

5.
分别以膨胀型阻燃剂(IFR)为主阻燃剂、有机蒙脱土(OMMT)为协效阻燃剂,对聚丙烯(PP)进行阻燃改性。采用UL-94垂直燃烧、极限氧指数(LOI)、热失重(TG)及拉伸等测试分别表征PP/IFR/OMMT复合材料的阻燃性能、热稳定性能及力学性能,研究了IFR和OMMT对PP阻燃性能、力学性能和热稳定性能的影响。通过红外线光谱仪分析了试样物质组成及扫描电子显微镜(SEM)观察了试样的外观形貌。结果表明:OMMT的加入,使PP/IFR复合材料体系的热稳定性和阻燃性能得到极大提高。当添加2%(质量分数)OMMT,PP/IFR/OMMT复合材料的LOI值从18%上升到23%,阻燃级别从NR提升到V-0,并且无熔滴滴落,同时复合材料的力学性能也较好,拉伸强度达到34.46MPa,断裂伸长率能达到107.19%。  相似文献   

6.
通过化学氧化法合成聚苯胺,并利用原位聚合法将聚苯胺(PAN)包覆在碳微球(CMSs)上,采用熔融共混法制得阻燃聚苯胺包覆碳微球/聚对苯二甲酸乙二醇酯复合材料(CMSs-PAN/PET)。采用扫描电镜、红外光谱仪、热重和氧指数仪等,对其形貌结构、分散性、热稳定性能、阻燃性能和力学性能进行了分析和研究。结果表明,聚苯胺包覆后的CMSsPAN与原始CMSs相比,在PET基体中的分散性得到提高,CMSs-PAN/PET的拉伸强度比CMSs/PET提高了28.1%;与纯PET相比,CMSs-PAN/PET复合材料的热稳定性明显提高,其极限氧指数达到32.1,提高了10.4。  相似文献   

7.
为改善UV固化聚氨酯丙烯酸酯(PUA)涂层的阻燃及热稳定性,对多壁碳纳米管(MWNTs)进行有机化改性,制备了一种含有N、P、Si三种阻燃元素于一体的新型碳纳米管阻燃单体(MWNT-P-MER);并经UV固化制备了两类MWNTs/PUA纳米材料,即MWNTs/PUA和MWNT-P-MER/PUA纳米材料。同时对样品热稳定性及阻燃性进行了测定分析,结果表明,两类材料的热稳定性及阻燃性均得到改善;MWNT-P-MER对PUA纳米材料的热稳定性及阻燃性能改善效果更显著。当MWNT-P-MER的添加量为10.7%时,可以得到综合性能最佳的MWNT-P-MER/PUA纳米材料:双键转化率达80%,极限氧指数(LOI)为33.2,UL-94燃烧级别达到V-0级,最终残炭率为20.7%,峰热释放速率为462kW/m2。  相似文献   

8.
以次磷酸铝(AHP)为阻燃剂对高密度聚乙烯(HDPE)基木塑复合材料进行阻燃改性。采用锥形量热、垂直燃烧、极限氧指数(LOI)系统评价复合材料的阻燃性能。通过拉伸强度、无缺口冲击强度、弯曲强度等测试,探讨了复合材料的力学性能。并通过热失重分析、扫描电镜对AHP阻燃木粉/HDPE(WF/HDPE)复合材料的机理进行分析。结果表明,AHP、木粉(WF)及WF中的结合水构成膨胀阻燃体系,AHP质量分数为30%时,WF/HDPE复合材料达到垂直燃烧V-0级别,LOI值达到25.5%,阻燃性能显著提高。AHP的加入使WF/HDPE复合材料的力学性能有所下降。  相似文献   

9.
采用芳纶浆粕(PPTA-pulp)对膨胀阻燃聚丙烯(PP)进行增强改性,通过一步共混法制备了PPTA-pulp-膨胀型阻燃剂(IFR)/PP阻燃复合材料,考察了PPTA-pulp用量对PPTA-pulp-IFR/PP复合材料的力学性能、阻燃性能及热稳定性能的影响。结果表明,当硅烷偶联剂KH-550处理的PPTA-pulp质量比为5%时,膨胀阻燃复合材料的力学性能达到最佳: 拉伸强度40.0 MPa,冲击强度56.9 J·m-1,极限氧指数LOI 28%,垂直燃烧等级达到UL-94 V-0级。复合材料的热稳定性能提高,炭残余量增加。SEM观察表明,PPTA-pulp经KH-550处理后,浆粕纤维与基体树脂的结合性较好。  相似文献   

10.
以聚磷酸铵(APP)、季戊四醇(PER)组成的膨胀阻燃剂(IFR)为主阻燃剂,有机蒙脱土(OMMT)为协效阻燃剂,马来酸酐接枝聚烯烃弹性体(POE-g-MAH)为增韧剂,以聚酰胺6(PA6)为聚合物成炭剂,采用熔融共混法制备了PP/PA6/POE-g-MAH/IFR/OMMT阻燃复合材料,并研究了PA6对PP阻燃复合材料阻燃性和力学性能的影响。通过极限氧指数(LOI)、垂直燃烧、热重分析、扫描电子显微镜和力学性能测试等手段对PP阻燃复合材料进行了测试与表征。结果表明:成炭剂PA6的加入,可显著地提高PP阻燃复合材料的阻燃性能,当PA6含量为5%时,PP阻燃复合材料的LOI由原来不含PA6时的25.5%提高到了30.0%,垂直燃烧等级由原来的无等级提高到了UL-94 V-0级,且随着PA6含量的进一步增加,LOI在逐渐增大。但PA6的加入,会使PP阻燃复合材料的力学性能下降。  相似文献   

11.
赵丽萍  蔡青  郭正虹 《复合材料学报》2019,36(10):2259-2265
通过熔融共混方法制备苯基膦酸铈(CeHPP)与十溴二苯醚(DBDPO)复配阻燃玻璃纤维增强聚对苯二甲酸乙二醇酯(GF/PET)复合材料。采用热失重分析(TGA)测试研究了DBDPO-CeHPP对GF/PET复合材料热稳定性的影响。同时利用垂直燃烧(UL-94)、极限氧指数(LOI)及微型锥形量热(MCC)测试表征DBDPO-CeHPP-GF/PET复合材料的阻燃性能。使用SEM对DBDPO-CeHPP-GF/PET复合材料的残炭表面形貌进行观察分析。结果表明,DBDPO与CeHPP复配后对DBDPO-CeHPP-GF/PET体系的热性能和阻燃性能都有很大的影响。其中,GF/PET复合材料与DBDPO和CeHPP质量比为91:6:3时,DBDPO-CeHPP-GF/PET复合材料的LOI高达29.5%,可以通过UL-94 V-0级。在MCC测试中,与纯GF/PET复合材料相比,该配比的DBDPO-CeHPP-GF/PET复合材料总热释放(THR)、热释放速率峰值(PHRR)及热熔(HRC)分别下降了10.2%、13.1%和12.8%。结合残炭形貌的测试结果,对DBDPO-CeHPP-GF/PET复合材料的阻燃机制进行了适当的解释分析。   相似文献   

12.
采用原位聚合法,以聚氨酯为壳材,制备微胶囊化聚磷酸铵(PUAPP)和微胶囊化膨胀石墨(PUEG)。采用XPS、FTIR、TG和SEM分别对PUAPP和PUEG进行表征,结果表明,聚氨酯有效包覆在聚磷酸铵和膨胀石墨表面,成功制备了PUAPP和PUEG。在此基础上,采用一步法全水发泡工艺将PUAPP和PUEG引入到聚氨酯硬泡(RPUF)中,制备出一系列阻燃RPUF复合材料。采用极限氧指数(LOI)、垂直燃烧(UL-94)、TG、万能试验机、导热及密度测试研究了PUAPP/RPUF、PUEG/RPUF及PUAPP-PUEG/RPUF复合材料的阻燃性能、力学性能、保温性能及热稳定性。研究表明,微胶囊化阻燃剂的加入可以提高RPUF复合材料的高温稳定性,PUEG/RPUF、PUAPP/RPUF和PUAPP-PUEG/RPUF复合材料在700℃的残炭率从1.2wt%分别提高至6.9wt%、11.2wt%和10.7wt%。阻燃测试表明,PUAPP和PUEG可以有效提高RPUF复合材料的阻燃性能,当加入10.4wt% PUAPP时,PUAPP/RPUF复合材料的LOI提高到22.3vol%,UL-94等级为V-0级;当加入10.4wt% PUEG时,PUEG/RPUF复合材料的LOI达到25.3vol%,UL-94等级为V-0级;PUAPP-PUEG/RPUF复合材料的LOI达到24.3vol%,UL-94等级为V-0级。SEM和拉曼测试表明,PUAPP和PUEG可以提高RPUF复合材料的炭渣石墨化程度,使炭渣的致密性更强。   相似文献   

13.
以甲基乙基次膦酸铝(Al(MEP))作为环氧树脂(EP)的阻燃剂, 制备了Al(MEP)/EP复合材料, 利用垂直燃烧和氧指数法研究了Al(MEP)/EP复合材料的阻燃性能; 探讨了不同组成的Al(MEP)/EP复合材料的弯曲强度和冲击强度; 采用红外光谱(FTIR) 、 TGA 、 DSC、 SEM分别对样品的结构、 热稳定性、 玻璃化转变温度(Tg) 和形貌进行了分析。 结果表明, Al(MEP)的质量分数为15%时, Al(MEP)/EP复合材料的氧指数值(LOI)即可达到32.5%, 垂直燃烧达到UL 94 V-0级。此外, 各种组成的复合材料的力学性能较好、 热稳定性能优良。  相似文献   

14.
将一种高效膨胀型无卤阻燃剂季戊四醇二磷酸酯双磷酰蜜胺(SPBDM)和有机改性蒙脱土(OMMT)添加到高分子量聚乳酸(PLA)中,熔融共混制备纳米膨胀型阻燃聚乳酸复合材料(SPBDM-OMMT/PLA)。采用XRD、TEM研究了纳米粒子的形态分布,并用热重分析法(TGA)、氧指数测试(LOI)、垂直燃烧测试(UL-94)探讨了该纳米阻燃SPBDM-OMMT/PLA复合材料的热性能和阻燃性能。研究表明,OMMT在PLA基体中有较好的分散性,高分子链插入层状硅酸盐片层间,形成了剥离型或插层型复合材料;相比纯PLA,加入SPBDM后改善了OMMT/PLA的高温热稳定性,最大热分解温度均向高温移动,且高温残炭质量分数大幅度提高;当SPBDM和OMMT质量分数分别为10.0%和1.0%时,纳米阻燃SPBDM-OMMT/PLA复合材料能达到较好的阻燃效果,LOI数值高达32%,相应垂直燃烧等级达UL-94V-0级。  相似文献   

15.
采用微波辐照方法将碳微球(CMSs)接枝在羊毛纤维表面。研究了CMSs悬浮液的制备工艺对羊毛纤维接枝率和阻燃性能的影响。通过炭化残渣量转换极限氧指数(LOI)的方法测试阻燃羊毛纤维的阻燃性能。结果表明:CMSs的接枝率达到6%时制得的阻燃羊毛纤维的LOI值可以达到29.5%,使羊毛的阻燃性能提高了17%,洗涤30次后LOI值仍达到29.2%。  相似文献   

16.
以聚磷酸铵(APP)和季戊四醇(PER)为原料组成的膨胀阻燃剂(IFR),以热塑性聚氨酯弹性体(TPU)为聚合物成炭剂,采用熔融共混法对聚丁二酸丁二醇酯(PBS)进行阻燃改性,并考察IFR分布位置对PBS/TPU共混物阻燃性能的影响。通过极限氧指数(LOI)、垂直燃烧、锥形量热分析、热重分析、流变性能测试和扫描电子显微镜(SEM)等对PBS/TPU/IFR阻燃复合材料进行了测试与表征。结果表明:成炭剂TPU的加入,可显著地提高PBS/IFR共混体系的阻燃性能,如当体系中不含TPU时,IFR含量为20%时,PBS/IFR共混体系的LOI为20.0%,UL 94垂直燃烧等级为无等级;而当体系中加入TPU后,不管IFR分布位置如何,其LOI可达28%左右,UL 94垂直燃烧等级为V-2。在IFR含量为25%时,IFR的分布位置对阻燃性能也有影响,当IFR直接分布于PBS相时,其UL 94垂直燃烧等级为V-0,优于IFR分布于TPU相的V-2级。  相似文献   

17.
采用共沉淀法将磷钨酸根(PWA)柱撑插层层状双金属氢氧化物(LDHs)制备了MgAl-LDHs-PWA,通过X射线衍射(XRD)、红外光谱(FT-IR)、扫描电镜(SEM)等手段对其结构和形貌进行了表征,并对其热稳定性进行分析。结果表明:PWA插入LDHs层间,且MgAl-LDHs-PWA的热稳定性与残余量得到大幅度提升。同时,对环氧树脂(EP)/MgAl-LDHs-PWA复合材料的阻燃性能及力学性能进行了评价。结果表明:当添加质量为20%时,EP/MgAl-LDHs-PWA复合材料的极限氧指数(LOI)为26.2%,垂直燃烧(UL-94)达到V-0等级。EP/MgAl-LDHs-PWA复合材料的拉伸强度和断裂伸长率分别为29.28MPa和3.6%。  相似文献   

18.
牛梅  杨雅茹  王欣  薛宝霞  张莹  戴晋明 《材料导报》2015,29(8):7-10, 15
采用原位聚合法制备了以碳微球(Carbon microspheres,CMSs)为囊芯,聚对苯二甲酸乙二醇酯为囊壁的胶囊碳微球(PCMSs),并利用熔融共混法制备了PCMSs/PET复合材料,研究了制备工艺对PCMSs形貌、包覆率以及阻燃性能的影响。结果表明,当PTA与EG质量比为1∶10,反应温度为140℃,反应时间为7h,催化剂含量2%,乳化剂用量1%时,PCMSs的包覆率及PCMSs/PET复合材料的LOI值均达到最大,其包覆率为36.2%,PCMSs/PET复合材料的LOI值提高到29.8%。  相似文献   

19.
为了获得性能较优的阻燃聚乳酸材料,以苯基次磷酸铝(BPA-Al)为阻燃剂,聚乳酸(PLA)作为基体,利用熔融共混法制得BPA-Al/PLA复合材料。采用傅里叶变换红外光谱、X射线衍射、拉曼光谱、氧指数等测试手段对BPA-Al/PLA复合材料及其残炭进行表征。结果表明,BPA-Al可有效抑制熔滴,提高PLA的阻燃性能和维卡软化温度。当BPA-Al的质量分数达到30%时,BPA-Al/PLA复合材料的氧指数为25.0%,水平垂直燃烧等级达V-0,维卡软化温度为65.8℃。同时,BPA-Al/PLA复合材料的力学性能较好。  相似文献   

20.
球磨混入溴化环氧树脂(BEO)和改性nano-Sb_2O_3以提高聚丙烯(PP)的阻燃性能,采用垂直燃烧(UL94)和极限氧指数(LOI)研究nano-Sb_2O_3/BEO/PP复合材料的阻燃性能,用扫描电镜(SEM)分析燃烧产物微观形貌,借助傅里叶变换红外光谱(FT-IR)和热重分析(TGA)研究Sb-Br阻燃体系协同作用机理。结果表明:改性nano-Sb_2O_3与BEO的反应可延长Br·在燃烧区的时间,从而消耗更多OH·和H·达到阻燃的目的。当改性nano-Sb_2O_3含量为7%(质量分数,下同),BEO含量为21%时,nano-Sb_2O_3/BEO/PP复合材料具有优异的阻燃性能,其极限氧指数值为28.6%,垂直燃烧等级UL94为V-0级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号