首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
近年来, 冷烧结低温制备陶瓷引起了很大关注, 并在BaTiO3陶瓷的制备上取得了一定进展。为了提高冷烧结BaTiO3陶瓷性能, 本研究采用水热法制备了分散性好、粒径为100 nm的四方相(晶格参数c/a为1.0085) BaTiO3粉末。采用0.1 mol/L的乙酸在100 ℃/1 h的条件下对粉末进行水热活化处理。以质量分数10% Ba(OH)2·8H2O为熔剂, 在350 MPa、400 ℃/1 h的条件下对粉体进行冷烧结, 最后经600 ℃/0.5 h退火获得了相对密度为96.62%、晶粒尺寸为180 nm, 常温介电(εr)为2836, 介电损耗(tanδ)低至0.03的BaTiO3陶瓷。乙酸处理后高活性粉末表面形成的非晶钛层有效促进了陶瓷的致密化, 抑制了杂相的生成和晶粒长大, 提高了介电性能, 大幅改善了冷烧结BaTiO3陶瓷出现的介电弥散现象, 从而实现了BaTiO3陶瓷的低温冷烧结制备。  相似文献   

2.
先进陶瓷材料作为工程材料和功能材料的重要组成部分,在新能源、通信电子、半导体、航空航天等工业领域具有广阔的应用前景。但是由于陶瓷粉体多为离子键或共价键化合物,采用传统烧结工艺制备致密陶瓷材料所需的烧结温度较高,保温时间较长,不可避免地会导致晶粒粗化及气孔残留,进而影响陶瓷材料的各项性能。为了降低烧结温度、缩短烧结时间、提高烧结致密度与材料性能,各国研究人员先后开发了多种新型烧结技术,包括放电等离子烧结(spark plasma sintering,SPS)、闪烧(flash sintering,FS)、冷烧结(cold sintering,CS)以及振荡压力烧结(oscillatory pressure sintering,OPS)等。利用上述烧结技术,可显著降低陶瓷材料的烧结温度和烧结时间,提升材料的各项性能,从而使陶瓷材料的应用范围得以扩展。从理论及应用两方面综述了先进陶瓷材料烧结新技术的研究进展,阐述了烧结新技术在高性能陶瓷材料制备过程中的技术优势和应用前景,期望为陶瓷烧结新技术的研究、开发及应用提供参考。  相似文献   

3.
采用溶胶-凝胶法制备Ca0.25(Li0.43Sm0.57)0.75TiO3(CLST)微波介质陶瓷纳米粉体, 研究了ZnO掺杂量和烧结温度对CLST+ xmol% ZnO陶瓷烧结性能和微波介电性能的影响。XRD分析结果表明: 随着ZnO掺杂量x的增加, 陶瓷的晶体结构从正交相变为伪立方相, 并在x≥1.5的样品中出现了杂相。CLST+ xmol% ZnO陶瓷的致密化烧结温度随x的增加而降低, x=1.0的样品的致密化烧结温度比x=0的降低了200 ℃。介电常数εr和频率品质因数Qfx增加和烧结温度的升高具有最优值, 频率温度系数则单调降低。x=1.0的样品在1100 ℃烧结时具有优异的综合性能: ρ = 4.85 g/cm3, εr =102.8, Qf = 5424 GHz, τf = -8.2×10-6/℃。表明ZnO掺杂的CLST陶瓷是一种很有发展潜力的微波介质陶瓷。  相似文献   

4.
以CaO-B2O3-SiO2(CBS)玻璃粉体和Al2O3陶瓷粉体为原料,通过在CBS与Al2O3的质量比固定为50:50的玻璃-陶瓷复合材料中添加适量的Bi2O3作为烧结助熔剂,探讨了Bi2O3助熔剂对CBS/Al2O3复合材料的烧结性能、介电性能、抗弯强度和热膨胀系数的影响规律.研究表明:Bi2O3助熔剂能通过降低CBS玻璃的转变温度和黏度促进CBS/Al2O3复合材料的致密化进程,于880 ℃下烧结即能获得结构较致密、气孔较少的CBS/Al2O3复合材料.然而,过量添加Bi2O3将使玻璃的黏度过低,从而恶化CBS/Al2O3复合材料的烧结性能、介电性能及抗弯强度.当Bi2O3的添加量为CBS/Al2O3复合材料的1.5wt%时,于880 ℃下烧结即能获得最为致密的CBS/Al2O3复合材料,密度为2.82 g·cm-3,这一材料具有良好的介电性能(介电常数为7.21,介电损耗为1.06×10-3),抗弯强度为190.34 MPa,0~300 ℃的热膨胀系数为3.52×10-6 K-1.  相似文献   

5.
Al2O3/6-6-3青铜复合材料的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用粉末冶金法制备出Al2O3/青铜复合材料, 研究了烧结温度、Al2O3颗粒尺寸、含量及表面状态对复合材料性能的影响。结果表明, 采用二次压制与烧结工艺制备的复合材料的组织致密,Al2O3颗粒分布均匀, 综合性能优于6-6-3青铜材料。Al2O3颗粒的化学包覆处理可以使复合材料的性能进一步提高。   相似文献   

6.
TiB2-Cu复合材料燃烧合成与二次致密化行为   总被引:2,自引:1,他引:1       下载免费PDF全文
采用燃烧合成技术制备了相对密度为90%左右的TiB2-40Cu金属-陶瓷复合材料,为了进一步提高复合材料的力学性能,研究了TiB2-40Cu金属-陶瓷高温压缩弹塑性变形行为,证明了高陶瓷体积分数下金属陶瓷在高温环境下具有一定的塑性行为。分别在1050℃、1090℃、1150℃对复合材料进行二次热压烧结,详细研究了工艺参数对TiB2-40Cu复合材料二次热压变形、组织特征及力学性能的影响。结果表明:经过二次热压后,材料的相对密度和弯曲强度有了较大幅度的提高,在1090℃时,材料的相对密度达到了96%,弯曲强度达到605.5MPa。并从宏观和微观上分析了致密化机理,认为致密化过程是多种机制共同作用的结果。   相似文献   

7.
采用粉末冶金法制备NiFe2O4纳米粉增韧NiFe2O4陶瓷铝电解惰性阳极, 研究了NiFe2O4纳米粉添加量对NiFe2O4陶瓷惰性阳极烧结行为和材料性能的影响。通过线收缩和SEM对NiFe2O4陶瓷的烧结性能和显微结果进行分析。研究结果表明: 随着NiFe2O4纳米粉添加量的增加, 烧结收缩程度逐渐增大, 烧结致密化开始温度和烧结初期活化能逐渐降低, 添加量为40%时试样从900℃开始大幅度收缩, 烧结初期表观活化能下降到291.43 kJ/mol。NiFe2O4陶瓷惰性阳极的体积密度、抗弯强度和断裂韧性随NiFe2O4纳米粉添加量的增加均呈现先上升后下降的变化趋势, 气孔率和静态腐蚀率呈先下降后上升的趋势, 均在30%达到极值, 断裂韧性达到最大值3.12 MPa•m1/2, 是未添加纳米粉试样的2.14倍。NiFe2O4纳米粉的添加能够明显增强晶界结合强度, 降低陶瓷材料气孔率, 从而提高断裂表面能实现增韧作用。  相似文献   

8.
无压烧结制备高致密度AlN-BN复合陶瓷   总被引:6,自引:0,他引:6  
以低温燃烧合成前驱物制备的比表面积为17.4m2/g的AlN粉末和市售BN粉末为原料, 利用无压烧结工艺制备AlN-15BN复合陶瓷, 研究了复合陶瓷的烧结行为以及制备材料的性能, 结果表明: 由于AlN粉末的烧结活性好, 复合材料的烧结致密化温度主要集中在1500~1650℃之间, 在1650℃烧结后, AlN-15BN复合陶瓷的相对密度可达95.6%. 继续升高烧结温度, 材料的致密度变化不大, 热导率继续增加. 在1850℃烧结3h后, 可以制备出相对密度为96.1%, 热导率为132.6W·m-1·K-1, 硬度为HRA64.2的AlN-15BN复合陶瓷. 提出了高比表面积的AlN粉末促进复合陶瓷烧结的机理, 利用XRD, SEM等手段对烧结体进行了表征.  相似文献   

9.
La2O3-TiO2-ZrO2玻璃具有很高的折射率, 在镜头材料和上转换发光基质材料等领域表现出良好的应用前景, 但其玻璃形成能力低, 通常只能采用快速冷却的方法制备, 因此难以获得大尺寸材料。为了获得大尺寸La2O3-TiO2-ZrO2玻璃, 本研究采用La2O3-TiO2-ZrO2非晶粉末为原料, 利用非晶在玻璃转变温度以上的塑性行为, 在温度动力学窗口ΔT内进行热压烧结制备了大尺寸La2O3-TiO2-ZrO2玻璃, 在保持非晶的前提下实现了La2O3-TiO2-ZrO2粉末的完全致密化。采用SEM、XRD等方法研究了样品的显微结构和相组成。研究发现, 当烧结温度高于910 ℃时, 烧结过程中会析出La4Ti9O24晶相; 当烧结温度低于900 ℃时, 样品保持良好的非晶性, 并随着烧结温度的增加, 样品的致密度有所升高。烧结压力也会影响烧结过程, 样品的致密度随着烧结压力升高而增加。大尺寸La2O3-TiO2-ZrO2非晶材料具有很高的折射率, 在587.6 nm处折射率可达到2.33。在La2O3-TiO2-ZrO2非晶粉末烧结过程中, 塑性流动是其主要的传质机理。  相似文献   

10.
针对常压烧结La2NiMnO6 (简称LNMO)双钙钛矿陶瓷存在的烧结温度高、致密度低、工艺周期长等问题, 采用等离子活化烧结技术(Plasma Activated Sintering, 简称PAS)制备LNMO陶瓷, 主要研究了烧结工艺(温度、压力) 对其物相结构、显微形貌、致密度和介电性能的影响, 以期得到物相单一、结构致密、性能良好的LNMO双钙钛矿陶瓷。利用X射线衍射仪、阿基米德排水法、扫描电子显微镜、阻抗分析仪等手段, 系统测试表征了LNMO陶瓷的结构与性能。结果表明: 升高烧结温度有利于改善LNMO陶瓷的结晶性并增大晶粒尺寸, 但过高温度会导致杂相生成; 增大烧结压力对物相无明显影响, 但在一定程度上提升了致密度。确定了较适宜的PAS条件为: 烧结温度975~1000 ℃、烧结压力80 MPa, 在此条件下烧结得到的LNMO陶瓷为单一的正交结构, 致密度为92%, 具有较大的介电常数(~10 6)。与常压烧结相比, 等离子活化技术集等离子体活化、压力、电阻加热为一体, 可在更低温度(降低400~500 ℃)和更短时间(缩短2~20 h)内获得较为致密的LNMO陶瓷。  相似文献   

11.
采用固相反应法制备了SrY0.15Ce0.85O2.925陶瓷材料,利用XRD、SEM和微波矢量网络分析仪研究了材料的相组成、结构、烧结特性和微波介电性能。结果表明,当烧结温度为1 450℃时,SrY0.15Ce0.85O2.925陶瓷的综合性能最佳:体积密度为5.2 g/cm3,相对密度达到92.7%,Q×f=21 503 GHz,εr=23.83,τf=-46.43×10-6/℃。以上结果表明,SrY0.15Ce0.85O2.925陶瓷可以作为现代移动通讯器件的备选材料。  相似文献   

12.
AB(O,N)3型钙钛矿氮氧化物是一类新型功能陶瓷材料,具有独特的介电/磁/光催化等性能,在能源存储与转化领域应用前景广阔,但传统制备工艺耗时长且产物纯度较低。本研究以尿素为氮源、金属氧化物为前驱体,采用无压放电等离子烧结设备一步合成了钙钛矿氮氧化物SrTa(O,N)3陶瓷粉体,并实现了快速致密化。深入研究了升温速率和合成温度对粉体组成与微观形貌的影响,并对优化后制备的陶瓷块体进行了介电性能表征。结果表明,较高的升温速率和适中的合成温度有利于氮化反应的充分进行,在100℃/min和1000℃下制得的SrTa(O,N)3粉体纯度最高,氧氮化物相含量约97%,粒径分布区间为100~300 nm, Sr、Ta、O、N四种元素分布均匀。较优的致密化工艺为烧结温度1300℃、升温速率300℃/min、保温时间1 min,经烧结制得的SrTa(O,N)3陶瓷试片致密度可达94%以上,且纯度很高,该材料在300Hz时的介电常数高达8349,介电损耗为10–4量级,优于文献报道值。本研究制备的SrTa(O,N)  相似文献   

13.
以高能球磨机械合金化制得的WC-40%Al2O3复合粉末为原料,采用二步热压烧结法制备复合块体。首先将粉末坯体在压力条件下加热到较高的温度 T1,获得相对致密的坯体结构,此时存在临界的可收缩气孔,然后将其保温在一个相对较低的温度 T2,通过低温保温实现致密化。由于烧结过程温度相对较低,晶粒长大被有效抑制。采用XRD、SEM、扫描探针(SPM)对复合材料的物相、微观结构进行表征,并进行正交实验分析第二步烧结温度以及保温时间对复合块体微观组织和力学性能影响。结果表明:当 T1=1600 ℃、T2=1450 ℃保温6 h时,WC-40%Al2O3复合材料成形致密度达到99.03%,维氏硬度和断裂韧性分别为18.36 GPa和10.4 MPa·m1/2,抗弯强度为1162.1 MPa.  相似文献   

14.
以Al2O3陶瓷成型体为基体,通过化学气相反应在陶瓷体内原位生长碳纳米管(CNTs),制备出CNTs/Al2O3陶瓷复合材料。结果表明,Al2O3陶瓷体中均匀分布有可观量的多壁CNTs,碳管根部嵌于Al2O3晶粒间并从晶粒表面生长出。在Al2O3陶瓷成型体中原位生长CNTs需严格控制生长条件,尤其是生长温度(850℃),温度过高和过低都难以长出CNTs,此外造孔剂、碳源和催化剂也影响CNTs的原位生长。对原位生长的CNTs/Al2O3复合体进一步高温烧结获得致密化的复合材料,其导电率达3.7 S/m,较纯Al2O3提高13个数量级。在陶瓷成型体中原位生长CNTs是一步法制备CNTs/陶瓷复合材料的新方法,可用于发展高性能的结构陶瓷和具有导电导热等多功能特性的新型陶瓷复合材料。  相似文献   

15.
采用放电等离子烧结技术制备了WC质量分数为40%的WC/Fe复合材料,研究了不同烧结温度条件下WC/Fe复合材料的致密度、组织、硬度及干摩擦磨损性能。利用SEM和XRD分析了不同烧结温度条件下存在的物相;采用销-盘摩擦磨损试验机(盘试样选用~80μm的Al2O3砂纸,滑动距离约为950m)测量了马氏体耐磨钢和WC/Fe复合材料在不同载荷下相对磨损率;用SEM观察磨损形貌,确定WC/Fe复合材料的磨损机制。结果表明:烧结温度为1080℃时,WC/Fe复合材料实现完全致密,WC陶瓷颗粒均匀分布在基体中并与基体界面结合良好;随着WC/Fe复合材料完全致密化,其硬度及耐磨性能逐渐提高;WC/Fe复合材料的耐磨性能远优于马氏体耐磨钢。WC/Fe复合材料磨损机制主要为氧化磨损和磨粒磨损。在低载荷条件下,颗粒脱离基体造成氧化膜破裂,促使材料表面受损;较高载荷条件下,WC陶瓷颗粒破碎加速氧化膜破裂,加快了材料的磨损。  相似文献   

16.
碳化硅陶瓷因自身优良的物理化学性能而具有广泛的应用前景。碳化硅的化学键结合特性决定了其难以烧结成型, 因此如何制备高质量碳化硅陶瓷是领域内的难点之一。本研究以三元稀土碳化物Dy3Si2C2作为新型SiC陶瓷的烧结助剂, 依据Dy-Si-C体系的高温相转变原位促进碳化硅的烧结致密化。采用放电等离子烧结技术, 利用金属Dy与SiC反应生成Dy3Si2C2, 对Dy3Si2C2包裹的SiC粉体进行烧结。在1800 ℃、45 MPa的烧结条件下, 得到了致密度为99%、热导率为162.8 W·m -1·K -1的高纯度碳化硅陶瓷。进一步的研究表明, 高温下Dy3Si2C2与SiC发生共晶反应, 在晶界处产生的液相促进了SiC陶瓷的致密化, 表明稀土层状碳化物Re3Si2C2 (Re=La, Ce…)有助于SiC的烧结致密。  相似文献   

17.
TiB2材料具有高熔点、高硬度、耐磨、耐腐蚀、抗氧化以及导电性好和导热性好等优点,是一种具有广泛应用前景的新型陶瓷材料.但是其极强的共价键晶体结构和较低的自扩散系数,使得其很难获得致密的陶瓷材料.主要从添加助烧剂和烧结技术两方面介绍了TiB2陶瓷活化烧结方法的研究进展,并分析了该技术促进材料烧结致密化的机制,同时介绍了热压烧结和放电等离子(SPS)烧结技术.  相似文献   

18.
研究了烧结温度及升温速率对氧化硼(B2O3)掺杂钛酸锶钡梯度陶瓷(Ba1-xSrxTiO3,x=0-0.4,步长0.02)的致密化、晶粒尺寸及介电性能的影响.结果表明,随着烧结温度的升高,在氧化硼挥发的同时致密化程度提高,从而居里峰提高且变得尖锐;随着氧化硼含量的增加,晶粒尺寸均匀长大、介电常数和介电损耗都增加;升温速率适中时,掺杂物的挥发、致密化进程及晶粒长大同步完成,梯度陶瓷介电性能才有效提高.此外,钛酸锶钡梯度陶瓷掺杂适量氧化硼明显降低烧结温度,比未掺杂相同成分的陶瓷烧结温度至少降低150℃,且介电损耗明显减小;梯度陶瓷的居里峰温度区间显著展宽,大大降低了该温区的介温系数,可望提高该系列陶瓷元器件精度及稳定性.  相似文献   

19.
采用两步法制备硼化钨陶瓷, 首先将硼粉与钨粉按一定比例混合, 在高温下合成硼化钨粉体, 再以此为原料采用冷压和高温烧结制备硼化钨陶瓷。研究硼钨比例对合成粉体物相组成的影响, 以及烧结温度对硼化钨陶瓷微观结构及力学性能的影响。研究结果表明: 硼钨摩尔比为2.5时, 可以得到纯度较高的WB2粉体。随着烧结温度的升高, WB2陶瓷的显气孔率减小, 相对密度增加, 材料的抗弯强度与显微硬度明显增大, 当烧结温度达到1800℃时, WB2陶瓷的开口孔隙率为5.2%, 相对密度86.0%, 抗弯强度72 MPa, 显微硬度2088.5 MPa。WB2陶瓷的断裂行为也从沿晶断裂转变为穿晶断裂模式。  相似文献   

20.
PTC热敏陶瓷的无铅化是绿色智能加热及电路智能保护元件研制的重要前提。为了获得可在空气气氛下烧结且兼具高居里温度和高升阻比的无铅化PTC热敏陶瓷,本工作采用固相法制备了(1-x)BaTiO3-0.5xBi0.5Na0.5TiO3-0.5xBi0.5K0.5TiO3和0.98BaTiO3-0.02yBi0.5Na0.5TiO3-0.02(1-y)Bi0.5K0.5TiO3三元固溶体系无铅PTC热敏陶瓷材料,研究了不同含量的Na和K元素对无铅PTC热敏陶瓷材料的烧结特性和电学性能的影响。结果表明,BNT和BKT均与BaTiO3形成固溶体,随着BNT含量的增加,PTC陶瓷平均晶粒尺寸减小;当BNT和BKT含量相同时,PTC陶瓷可以在较宽的烧结温度范围内实现半导化,且在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号