首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the statistical properties of speckle of the logarithmically transformed signal in optical coherence tomography (OCT) both theoretically and experimentally. OCT signals of Intralipid solution with different volume particle concentrations ρ (correspondingly, scattering coefficient μ(s) ranges from 1.25 to 25.11 mm(-1)) were measured and analyzed under two different focusing conditions [numerical apertures (NAs) of the objective lens of 0.13 and 0.25]. We found that the effect of the speckle noise can be suppressed by displaying OCT images in the logarithmic scale and by using the objective lens with a higher NA. We also found that the speckle properties are correlated with the scattering properties of the sample, which may be used to characterize the scattering properties of biological tissue. The simulated OCT image and the in vitro OCT image of a rat liver are used as examples to demonstrate the feasibility of the method.  相似文献   

2.
The synthetic aperture radar (SAR) images are mainly affected by speckle noise. Speckle degrades the features in the image and reduces the ability of a human observer to resolve fine detail, hence despeckling is very much required for SAR images. This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different frequency scales using curvelet transform, and then applies the fuzzy shrinking technique to high-frequency coefficients to restore noise-contaminated coefficients. The proposed method does not use threshold approach only by proper selection of shrinking parameter the speckle in SAR image is suppressed. The experiment is carried out on different resolutions of RISAT-1 SAR images, and results are compared with the existing filtering algorithms in terms of noise mean variance (NMV), mean square difference (MSD), equal number of looks (ENL), noise standard deviation (NSD) and speckle suppression index (SSI). A comparison of the results shows that the proposed technique suppresses noise significantly, preserves the details of the image and improves the visual quality of the image.  相似文献   

3.
The quality of ultrasound scanning images is usually damaged by speckle noise. This paper proposes a method based on local statistics extracted from a histogram to reduce ultrasound speckle through a region growing algorithm. Unlike single statistical moment-based speckle reduction algorithms, this method adaptively smooths the speckle regions while preserving the margin and tissue structure to achieve high detectability. The criterion of a speckle region is defined by the similarity value obtained by matching the histogram of the current processing window and the reference window derived from the speckle region in advance. Then, according to the similarity value and tissue characteristics, the entire image is divided into several levels of speckle-content regions, and adaptive smoothing is performed based on these classification characteristics and the corresponding window size determined by the proposed region growing technique. Tests conducted from phantoms and in vivo images have shown very promising results after a quantitative and qualitative comparison with existing work.  相似文献   

4.
We describe a new semiautomatic image processing method for detecting the cartilage boundaries in optical coherence tomography (OCT). In particular, we focus on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. The novel boundary-detection system presented here consists of (1) an adaptive filtering technique for image enhancement and speckle reduction, (2) edge detection, and (3) edge linking by graph searching. The procedure requires several steps and can be automated. The quantitative measurements of cartilage thickness on OCT images correlated well with measurements from histology.  相似文献   

5.
The enhancement of optical coherence tomography (OCT) skin images can help dermatologists investigate the morphologic information of the images more effectively. In this paper, we propose an enhancement algorithm with the stages that includes speckle reduction, skin layer detection, and attenuation compensation. A weighted median filter is designed to reduce the level of speckle while preserving the contrast. A novel skin layer detection technique is then applied to outline the main skin layers: stratum corneum, epidermis, and dermis. The skin layer detection algorithm does not make any assumption about the structure of the skin. A model of the light attenuation is then used to estimate the attenuation coefficient of the stratum corneum, epidermis, and dermis layers. The performance of the algorithm has been evaluated qualitatively based on visual evaluation and quantitatively using two no-reference quality metrics: signal-to-noise ratio and contrast-to-noise ratio. The enhancement algorithm is tested on 35 different skin OCT images, which show significant improvements in the quality of the images, especially in the structures at deeper levels.  相似文献   

6.
在微操作中,显微视觉系统获取的图像通常是离焦模糊图像.根据最小二乘原理和回归模型设计自适应滤波器,用于消除图像噪声,提高图像的信噪比;离焦模糊图像的退化模型可用圆盘函数描述,利用模糊图像频域的零点位置来估计圆盘函数的模糊参数;采用基于简化Wiener滤波的逆滤波器方法对模糊图像进行复原.对算法进行了仿真和实验分析,结果表明,该方法能够以较少的运算时间代价获取较好的复原效果.  相似文献   

7.
基于自适应形态滤波的医学超声图像降噪   总被引:3,自引:0,他引:3  
针对医学超声图像上的斑点噪声,本文提出一种基于自适应形态滤波的降噪方法.首先构造一组检测图像中不同像素值突变的结构因子;再对每个结构因子构造相应的形态滤波结构元;最后对每个像素点邻域进行结构检测,找到该点处最可能存在的突变结构,以相应的结构元完成该点的形态滤波.对不同信噪比的仿真图像和实际图像分别采用本文方法和各向异性扩散滤波,不同尺度传统形态滤波进行了:比较实验,结果表明:采用本方法可将超声图像的信噪比、对比度噪声比和图像优度分别平均提高15%、37%和69%,优于其它方法.  相似文献   

8.
In order to improve speckle noise denoising of block matching and 3D filtering (BM3D) method, an image frequency-domain multi-layer fusion enhancement method (MLFE-BM3D) based on nonsubsampled contourlet transform (NSCT) has been proposed. The method designs an NSCT hard threshold denoising enhancement to preprocess the image, then uses fusion enhancement in NSCT domain to fuse the preliminary estimation results of images before and after the NSCT hard threshold denoising, finally, BM3D denoising is carried out with the fused image to obtain the final denoising result. Experiments on natural images and medical ultrasound images show that MLFE-BM3D method can achieve better visual effects than BM3D method, the peak signal to noise ratio (PSNR) of the denoised image is increased by 0.5?dB. The MLFE-BM3D method can improve the denoising effect of speckle noise in the texture region, and still maintain a good denoising effect in the smooth region of the image.  相似文献   

9.
朱明  杨利杰  吕金燕  王梦飞 《包装工程》2018,39(19):190-196
目的对于由多种因素所导致的印刷图像退化问题,文中提出一种针对椒盐噪声、高斯噪声和模糊退化等多重退化因素的图像复原方法。方法首先针对印刷图像椒盐噪声密度不高的特点,设计一种基于灰度范围准则和局部差别准则的椒盐噪声二级检测和滤除方法,并通过评价实验得出合适的阈值参数设置。在去除高斯噪声和图像模糊的过程中,利用边缘保持平滑滤波的原理和特性,将双边滤波器和引导滤波器应用于图像复原中,又在此基础上设计和应用图像细节增强的二次引导滤波器。结果在椒盐噪声去除方面,新方法对大部分图像都能取得较好的复原效果,尤其对细微边缘不多的图像效果最佳,复原后的PSNR值能达到40以上。二次引导滤波器对高斯噪声和图像模糊的复原效果最好。结论通过对不同图像复原方法的效果进行评价和分析,验证了文中方法的性能,为今后图像复原技术的应用提供了指导。  相似文献   

10.
Passive millimeter-wave (PMMW) images often suffer common problems of noise and blurring. A new method is proposed to estimate the instrument response function (IRF) and desired image simultaneously. The proposed variational model integrates the adaptive weight data term, image smooth term, and IRF smooth term. The major novelty of this work is that Huber–Markov regularization is adopted for PMMW image restoration, which can preserve structural details as well as suppress noise effectively. The IRF is parametrically formulated as a Gaussian-shaped function based on experimental measurements through the utilized PMMW imaging system. The alternation minimization iterative method is applied to achieve the IRF width and desired image. Comparative experimental results with some real PMMW images reveal that the proposed approach can effectively suppress noise, reduce ringing artifacts, and improve the spatial resolution.  相似文献   

11.
Accurate and noninvasive measurement of tissue optical properties can be used for biomedical diagnostics and monitoring of tissue analytes. Noninvasive measurement of tissue optical properties (total attenuation and scattering coefficients, optical thickness, etc.) can be performed with the optical coherence tomography (OCT) technique. However, speckle noise substantially deteriorates the accuracy of the measurements with this technique. We studied suppression of speckle noise for accurate measurement of backscattering signal and scattering coefficient with the OCT technique. Our results demonstrate that the precision of measurement of backscattering signals with the OCT technique can be 0.2% for homogeneously scattering media and 0.7% for skin, if spatial averaging of speckle noise is applied. This averaging allows us to achieve the precision of tissue scattering coefficient measurements of approximately +/-0.8%. This precision can be further improved by a factor of 2-3, upon optimization of OCT operating parameters.  相似文献   

12.
基于小波神经网络的激光散斑图像去噪技术研究   总被引:1,自引:1,他引:0  
提出基于小波神经网络的图像去噪方法,该方法兼有小波分析的良好时频域特性和神经网络的自适应能力.实验结果表明,该方法在去除噪声上优于中值滤波等传统去噪声方法,其散斑指数较小,峰值信噪比较大,在有效去除噪声同时,又能很好地保护图像的细节信息.  相似文献   

13.
Despeckling of medical ultrasound images   总被引:6,自引:0,他引:6  
Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters--wavelet denoising, total variation filtering, and anisotropic diffusion--and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments.  相似文献   

14.
Images degraded due to bad weather conditions affect the quality of vision-based security systems, as the distortions obscure contrasts in the frames of the images. In this paper, we present a novel approach that uses adaptive total variation minimisation to retain the object and reduce the noise from a single image, thereby enhancing fog-degraded images. Representative experimental results show that our proposed algorithm is effective for contrast and saturation enhancement of fog-degraded images.  相似文献   

15.
针对检测超声图像的边缘问题,介绍了一种基于Gabor奇部滤波器进行边缘检测的综合方法。为了去除图像噪声,首先进行基于小波变换和中值滤波的降噪处理,然后利用高斯函数平滑图像。在边缘检测过程中,使用Gabor奇部滤波器检测边缘。最后,使用非最大值抑制得到最终结果。结果表明该方法是对超声图像进行边缘检测的一种有用方法。当然,该方法也具有普遍性,可以应用到其他图像。  相似文献   

16.
A new algorithm for image restoration in the presence of additive white Gaussian noise is presented. This algorithm is based on a new, adaptive method to estimate the additive noise. The basic idea in this technique is to identify uniform structures or objects in the image by use of an adaptive neighborhood and to estimate the noise and the signal content in these areas separately. The noise is then subtracted selectively from the seed pixel of the adaptive neighborhood, and the process is repeated at every pixel in the image. The algorithm is compared with the adaptive two-dimensional least-mean-squares and the adaptive rectangular-window least-mean-squares algorithms for noise suppression. The results from the application of these algorithms to synthesized images and natural scenes are presented along with mean-squared-error measures. The new algorithm performs better than the other two methods both in terms of visual presentation and mean-squared error.  相似文献   

17.
陈敬军  范威 《声学技术》2021,40(6):858-863
声呐图像的噪声背景抑制是提高水下目标检测能力的重要问题。针对声呐图像背景斑点噪声强、目标轮廓模糊、目标回波对比度低等问题,利用确定性目标回波信号与随机分布的干扰噪声之间的相关统计特性差异,采用基于最小均方差准则的阵列信号维纳滤波器,通过主动最小方差无畸变响应(Minimum Variance Distortionless Response,MVDR)波束形成和后置维纳滤波的两级处理,去除声呐随机噪声背景。试验数据的处理结果表明:在噪声干扰条件下,相比于常规波束形成(Common Beamforming,CBF),主动MVDR处理提高了目标回波的局部信噪比,后置维纳滤波处理降低了随机分布的斑点噪声,使声呐图像的清晰度得到增强。  相似文献   

18.
In this paper, we propose a speckle noise reduction method for spectral-domain optical coherence tomography (SD-OCT) images called multi-frame weighted nuclear norm minimization (MWNNM). This method is a direct extension of weighted nuclear norm minimization (WNNM) in the multi-frame framework since an adequately denoised image could not be achieved with single-frame denoising methods. The MWNNM method exploits multiple B-scans collected from a small area of a SD-OCT volumetric image, and then denoises and averages them together to obtain a high signal-to-noise ratio B-scan. The results show that the image quality metrics obtained by denoising and averaging only five nearby B-scans with MWNNM method is considerably better than those of the average image obtained by registering and averaging 40 azimuthally repeated B-scans.  相似文献   

19.
The clinical utility of pulse-echo ultrasound images is severely limited by inherent poor resolution that impacts negatively on their diagnostic potential. Research into the enhancement of image quality has mostly been concentrated in the areas of blind image restoration and speckle removal, with little regard for accurate modeling of the underlying tissue reflectivity that is imaged. The acoustic response of soft biological tissues has statistics that differ substantially from the natural images considered in mainstream image processing: although, on a macroscopic scale, the overall tissue echogenicity does behave some-what like a natural image and varies piecewise-smoothly, on a microscopic scale, the tissue reflectivity exhibits a pseudo-random texture (manifested in the amplitude image as speckle) due to the dense concentrations of small, weakly scattering particles. Recognizing that this pseudorandom texture is diagnostically important for tissue identification, we propose modeling tissue reflectivity as the product of a piecewise-smooth echogenicity map and a field of uncorrelated, identically distributed random variables. We demonstrate how this model of tissue reflectivity can be exploited in an expectation-maximization (EM) algorithm that simultaneously solves the image restoration problem and the speckle removal problem by iteratively alternating between Wiener filtering (to solve for the tissue reflectivity) and wavelet-based denoising (to solve for the echogenicity map). Our simulation and in vitro results indicate that our EM algorithm is capable of producing restored images that have better image quality and greater fidelity to the true tissue reflectivity than other restoration techniques based on simpler regularizing constraints.  相似文献   

20.
In this article, fuzzy logic based adaptive histogram equalization (AHE) is proposed to enhance the contrast of MRI brain image. Medical image plays an important role in monitoring patient's health condition and giving an effective diagnostic. Mostly, medical images suffer from different problems such as poor contrast and noise. So it is necessary to enhance the contrast and to remove the noise in order to improve the quality of a various medical images such as CT, X‐ray, MRI, and MAMOGRAM images. Fuzzy logic is a useful tool for handling the ambiguity or uncertainty. Brightness Preserving Adaptive Fuzzy Histogram Equalization technique is proposed to improve the contrast of MRI brain images by preserving brightness. Proposed method comprises of two stages. First, fuzzy logic is applied to an input image and then it's output is given to AHE technique. This process not only preserves the mean brightness and but also improves the contrast of an image. A huge number of highly MRI brain images are taken in the proposed method. Performance of the proposed method is compared with existing methods using the parameters namely entropy, feature similarity index, and contrast improvement index and the experimental results show that the proposed method overwhelms the previous existing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号