首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kin-tak Lau   《Materials & Design》2002,23(8):741-749
Recently, the development of shape memory alloy (SMA) actuators, in the forms of wire, thin film and stent have been found increasingly in the fields of materials science and smart structures and engineering. The increase in attraction for using these materials is due to their many unique materials, mechanical, thermal and thermal-mechanical properties, which in turn, evolve their subsequent shape memory, pseudo-elasticity and super-elasticity properties. In this paper, a common type of SMA actuator, Nitinol wires, were embedded into advanced composite structures to modulate the structural dynamic responses, in terms of natural frequency and damping ratio by using its shape memory and pseudo-elastic properties. A simple theoretical model is introduced to estimate the natural frequency of the structures before and after actuating the embedded SMA wires. The damping ratios of different SMA composite beams were measured through experimental approaches. The natural frequencies changed slightly at a temperature above the austenite finish temperature of composite beams with embedded non-prestrained SMA wires. However, the increase of the natural frequencies of the beams with embedded prestrained SMA wires were found in both the theoretical prediction and experimental measurements. The damping ratios of SMA composite beams increased with increasing the temperature of the embedded wires with and without being pre-strained. Compressive and local failures of the beams with high wire content are a possible explanation.  相似文献   

2.
Delamination of composite materials due to low velocity impacts is one of the major failure types of aerospace composite structures. The low velocity impact may not immediately induce any visible damage on the surface of structures whilst the stiffness and compressive strength of the structures can decrease dramatically.

Shape memory alloy (SMA) materials possess unique mechanical and thermal properties compared with conventional materials. Many studies have shown that shape memory alloy wires can absorb a lot of the energy during the impact due to their superelastic and hysteretic behaviour. The superelastic effect is due to reversible stress induced transformation from austenite to martensite. If a stress is applied to the alloy in the austenitic state, large deformation strains can be obtained and stress induced martensite is formed. Upon removal of the stress, the martensite reverts to its austenitic parent phase and the SMA undergoes a large hysteresis loop and a large recoverable strain is obtained. This large strain energy absorption capability can be used to improve the impact tolerance of composites. By embedding superelastic shape memory alloys into a composite structure, impact damage can be reduced quite significantly.

This article investigates the impact damage behaviour of carbon fiber/epoxy composite plates embedded with superelastic shape memory alloys wires. The results show that for low velocity impact, embedding SMA wires into composites increase the damage resistance of the composites when compared to conventional composites structures.  相似文献   


3.
将无线射频识别技术(RFID)引入结构健康监测领域, 提出了利用传感标签和读写器实现结构健康无线监测的新方法。以埋入环氧树脂复合材料结构中具有一定规格和布局的NiTi形状记忆合金(SMA)超弹丝作为电容器的电极, 分布的RFID传感标签实时获取形状记忆合金丝间的微小电容信号, 并将其与时间、 位置编码信息打包后无线传输给读写器和监控站点。对两种SMA增强复合材料层合板, 分别在万能材料试验机和冲击试验机上进行了拉伸、 弯曲和冲击实验, 结果表明, 系统能实现对埋入结构中NiTi超弹性传感元件的高精度监测, 并具有功能扩展方便、 路由选择与定位简单的特点。  相似文献   

4.
The effects of the content and position of shape memory alloy (SMA) wires on the mechanical properties and interlaminar fracture toughness of glass‐fiber‐reinforced epoxy (GF/epoxy) composite laminates are investigated. For this purpose, varying numbers of SMA wires are embedded in GF/epoxy composite laminates in different stacking sequences. The specimens are prepared by vacuum‐assisted resin infusion (VARI) processing and are subjected to static tensile and three‐point‐bending tests. The results show that specimens with two SMA wires in the stacking sequence of [GF2/SMA/GF1/SMA/GF2] and four SMA wires in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] exhibit optimal performance. The flexural strength of the optimal four‐SMA‐wire composite is lower than that of the pure GF/epoxy composite by 5.76% on average, and the flexural modulus is improved by 5.19%. Mode‐I and II interlaminar fracture toughness tests using the SMA/GF/epoxy composite laminates in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] are conducted to evaluate the mechanism responsible for decreasing the mechanical properties. Scanning electron microscopy (SEM) observations reveal that the main damage modes are matrix delamination, interfacial debonding, and fiber pullout.
  相似文献   

5.
A semi-empirical method is proposed for the extraction, simultaneously, of the transverse tensile and in-plane shear moduli of unidirectional laminae, at various strain rates and temperatures, from tests on symmetric and balanced ±65 ° angle-ply composite laminates. The extraction method is applied to data obtained from tests on Kevlar-49/epoxy and carbon/ epoxy filament-wound tubes which were subjected to internal pressure loading at three key temperatures of −45, 20 and 70 °C at different strain rates of up to 80/s. The combined effect of strain rate and temperature on these extracted properties is studied by applying strain rate temperature equivalence principles. It is found that the variation of the mechanical properties of the two materials with strain rate and temperature can be adequately described by semi-empirical equations similar to the Arrhenius and Williams-Landel-Ferry relationships, usually used for homogeneous solids.  相似文献   

6.
采用有限元软件ABAQUS实现了埋入形状记忆合金(SMA)丝的复合材料圆柱壳壁板结构热振动特性分析.基于“ang-Rogers本构模型编写用户子程序(UMAT)模拟形状记忆合金材料的超弹性行为和形状记忆效应,并在不同温度和应力状态下验证了程序的正确性.基于此程序,计算了埋入SMA丝的复合材料圆柱壳壁板在温度和机械载荷作用下的一阶固有频率,分析了其热振动特性和屈曲特性.模拟结果表明:加热驱动SMA丝一般会提高结构的固有频率和屈曲临界,SMA丝的数量对结构的热振动和屈曲特性有显著影响。这些结论将对智能复合材料结构设计、抗热设计有一定的指导作用。  相似文献   

7.
以硅烷偶联剂和正硅酸乙酯(TEOS)为前躯体, 以固体酸-对甲苯磺酸为催化剂制备硅溶胶, 利用硅溶胶对碳纤维进行表面改性后, 以环氧树脂为基体, 制备碳纤维增强环氧树脂复合材料。利用SEM、 TEM、 万能试验机、 偏光显微镜等对表面改性前后的碳纤维形态、 力学性能及碳纤维/环氧树脂复合材料的界面性能进行表征, 研究了硅溶胶改性碳纤维对其复合材料界面性能影响。结果表明, 硅溶胶处理碳纤维后, 在碳纤维表面原位生成具有膜-粒结构的表面层, 改性后碳纤维的强度由2.41 GPa提高到3.00 GPa, 界面性能也得到了明显改善, 界面剪切强度(IFSS)提高了51.41%。  相似文献   

8.
石墨/碳化硅/铁氧体涂层复合材料性能研究   总被引:2,自引:1,他引:1  
为了开发具备良好介电性能和力学性能的多功能吸波复合材料,以涤纶针织物为基布,以环氧树脂为基体,在基布上进行石墨/碳化硅/铁氧体三层复合涂层整理,制备1.5 mm涂层厚度的柔性纺织涂层复合材料.采用介电谱仪研究了吸波剂的含量对吸波涂层材料介电常数和损耗角正切的影响.鉴于该材料多用于工程领域,采用万能材料实验机测试了该复合材料的拉伸、弯曲、剪切等力学性能.结果表明,该复合材料在低频段具备良好的介电性能,且具备一定的力学性能.  相似文献   

9.
采用MTS-810材料试验机、Zwick-HTM5020高速拉伸试验机及分离式Hopkinson拉杆(SHTB)实验装置,并结合数字图像相关性(Digital image correlation,DIC)分析方法,对E玻璃纤维增强环氧树脂基复合材料棒材在10-3~2 400 s-1应变率范围内的轴向拉伸力学性能进行了较系统的实验研究,获得了不同应变率下材料的应力-应变曲线,揭示了应变率对材料的拉伸强度和断裂应变的影响规律。通过显微分析拉伸试样的断口形貌,揭示了试样的断裂机制及对应变率的依赖性。实验结果表明:E玻璃纤维增强环氧树脂基复合材料的力学性能具有强烈的应变率效应,归一化拉伸强度随着应变率对数线性增加,而归一化断裂应变则随着对数应变率线性减小;断口显微分析显示:E玻璃纤维增强环氧树脂基复合材料的轴向拉伸断裂模式依赖于应变率,低应变率加载下试样发生沿45°方向的剪切断裂,随着应变率增大,试样断裂模式逐渐过渡到沿轴向的拉伸断裂,特别是在高应变加载下,观察到大量的玻璃纤维丝被拉断,同时环氧树脂基体也发生严重的碎裂现象,这反映了基体材料与玻璃纤维之间相互约束作用在增强。  相似文献   

10.
Shape memory alloy (SMA) is commercially available for a variety of actuator and damping materials. Recently, SMA wires have also become commercially available for the design of smart composite structures because SMA wires with a small diameter can be easily produced. In this work, two types of SMA-based composites are presented for investigating the vibration characteristics. First, laminated composite plates containing unidirectional fine SMA wires are fabricated. By measuring the vibration mode of a clamped cantilever, the influence of both SMA arrangement and temperature on the vibration characteristics is made clear. Next, laminated composite plates with embedded woven SMA layer are fabricated. The stiffness tuning capability is evaluated by impact vibration tests with different temperatures. It is found that the stiffness tuning capability may be improved by increasing the volume fraction of SMAs and by controlling accurately the internal stress according to the phase transformation temperature of SMAs from martensite to austenite. The theoretical prediction on the natural frequency considering the SMAs behavior and laminated structures is proposed and their results agree reasonably with experimental ones.  相似文献   

11.
In this paper, numerical simulation analyses of the thermal buckling behavior of laminated composite shells with embedded shape memory alloy (SMA) wires were performed to investigate the effect of embedded SMA wires on the characteristics of thermal buckling. In order to simulate the thermomechanical behavior of SMA wires, the constitutive equation of the SMA wires was formulated in the form of an ABAQUS user subroutine. The computational program was verified by showing the response of the pseudoelasticity and shape memory effect (SME) at various temperatures and stress levels. Modeling of the laminated composite shells with embedded SMA wires and thermal buckling analyses were performed with the use of the ABAQUS code linked with the subroutine of the formulated SMA constitutive equations. The thermal buckling analyses of the composite shells with embedded SMA wires show that the critical buckling temperature can be increased and the thermal buckling deformation can be decreased by using the activation force of embedded SMA wire actuators.  相似文献   

12.
An experimental study has been conducted to design and fabricate smart composite beams embedded with prestrained nitinol wire actuators. The developed fabrication process allowed both quasi-isotropic E-glass/epoxy and carbon/epoxy hosts to be eccentrically embedded with 10 parallel prestrained wires with a purpose-made alignment device and cured successfully in an autoclave. Smart composite beams of three different lengths were made for each type of host. Both single-cycle and multi-cycle thermomechanical bending actuations of these beams in the cantilever set-up were characterised experimentally by applying various levels of electric current to the nitinol wires. The performance characteristics showed that the present fabrication process was repeatable and reliable. While the end deflections of up to 41 mm were easily achieved from smart E-glass/epoxy beams, the limited end deflections were observed from the smart carbon/epoxy beams due primarily to our inability to insulate the nitinol wires. Moreover, it seemed necessary to overheat the prestrained wires to much higher temperatures beyond the complete reverse transformation in order to generate recovery stress. The longer beams showed greater actuation rates and took less time to reach the same level of deflection. It was found that the actuation capability derived from single-cycle actuation exercises was not suited to multi-cycling actuations and could result in premature failure of multi-cycled smart beams.  相似文献   

13.
Shape memory alloy (SMA) composites are the desirable candidate for smart materials that used in intelligent structures. However, the overall mechanical performance of SMA composites depends immensely on the quality of the interaction between SMA and polymer matrix. Therefore, it is necessary to find out an approach to enhance the interfacial property of this composite. In this paper, we modified nickel–titanium SMA wire with nano-silica particles before and after acid treatment. The modification effect on the interfacial strength between SMA and epoxy resin was evaluated. Contact angle analysis, scanning electron microscopy (SEM) observation, and single fiber pull-out test were carried out. The bonding characteristics between modified wire and liquid/cured resin were investigated. We then embedded SMA wire into woven glass fabric/epoxy composite laminates, and manufactured this hybrid composites via vacuum assisted resin transfer molding processing. Three-point-bending test of the hybrid composites was performed to validate the modification effect. Fiber pull-out experiment demonstrates that the interfacial shear strength increases by 6.48% by nano-silica particles coating, while it increases by 52.21% after 8 h acid treatment and nano-silica particles coating simultaneously. For hybrid composites, flexural strength of the two specimens increases by 19.8 and 48.2%, respectively. In SEM observation, we observed large debonding region in unmodified composites, while interfacial adhesion between modified wire and epoxy keeps strong after flexural damage.  相似文献   

14.
In the present investigation, dynamic mechanical analysis (DMA), thermo gravimetric analysis (TGA), tensile tests, fatigue tests and the single edge notch tensile (SENT) tests were performed on unfilled, 1, 2 and 3 wt.% vapor grown carbon nanofiber (CNF) filled SC-15 epoxy to identify the loading effect on thermal and mechanical properties of the composites. DMA studies revealed that filling the 3% carbon nanofiber into epoxy can produce 65% enhancement in storage modulus at room temperature and 6 °C increase in T g. However, TGA results show that thermal stability of composite is insensitive to the CNF content. Tensile tests were carried out at the strain rate range from 0.02 min−1 to 2 min−1. Results show that CNF/epoxy are strain rate sensitive materials, the modulus and tensile strength increased with increasing of strain rate. Experimental results also indicate that modulus of the nanophased epoxy increases continuously with increasing CNF content. But the 2% CNF infusion system exhibit maximum enhancement in tensile strength, fatigue performance and fracture toughness as compared with other system.  相似文献   

15.
为提高碳纤维/环氧树脂复合材料的刚性和热尺寸稳定性,首先利用短切碳纤维制备了碳纤维网络增强体(CFNR),并将其与环氧树脂复合制备了CFNR/环氧树脂新型复合材料。然后,分别利用扫描电镜和热机械分析仪对CFNR/环氧树脂复合材料的微观结构和热力学性能进行了表征。结果表明:CFNR/环氧树脂复合材料中有明显的网络节点,即碳质粘结点;CFNR/环氧树脂复合材料具有较好的导电性、较高的刚性和较低的热膨胀性,其弹性模量分别为常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的3倍和6倍,平均热膨胀系数(60~200℃)分别为常规短切碳纤维/环氧树脂复合材料的1/15及纯环氧树脂的1/40;随着温度升高,CFNR/环氧树脂复合材料、常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的弹性模量均因环氧树脂变软而降低,当温度高于80℃时,CFNR/环氧树脂复合材料的弹性模量分别约为常规短切碳纤维/环氧树脂复合材料的7倍和纯环氧树脂的近70倍。研究结论可以为开发高刚性、低膨胀聚合物基复合材料提供实验依据和理论指导。  相似文献   

16.
Systematic single fiber pullout tests were performed on epoxy composites embedded with nickel titanium shape memory alloy (SMA) wires. The SMA wires were tested in the austenitic or martensitic states to study and decouple the elastic moduli from martensite transformation or reorientation stresses in the analysis of debond loads. The results reveal that the SMA wires that were in the austenite phase consistently produced higher debond loads as compared to that of those wires that started in the martensite phase, likely due to differences in the Poisson’s ratio. Additionally, there appears to be a relationship between the elastic modulus and debond load where reinforcements with a higher elastic modulus displayed lower debond loads. Lastly, for SMA reinforcements that underwent a martensitic phase transformation or reorientation, the debond load was equivalent to the martensite transformation or reorientation load. The results of this work illustrate the sensitivity of SMA reinforced composites on the mechanical behavior and phase transformation characteristics of the constituent materials.  相似文献   

17.
Shape memory alloy (SMA) in the form of wires or short fibers can be embedded into host materials to form SMA composites that can satisfy a wide variety of engineering requirements. The recovery action of SMA inclusions induced by elevated temperature can change the modal properties and hence the mechanical responses of entire composite structures. Due to the weak interface strength between the SMA wire and the matrix, interface debonding often occurs when the SMA composites act through an external force or through actuation temperature or combination of the two. Thus the function of SMAs inside the matrix cannot be fully utilized. To improve the properties and hence the functionality of SMA composites it is therefore very important to understand the stress transfers between SMA fibers and matrix and the distributions of internal stresses in the SMA composite. In this paper, a theoretical model incorporating Brinson’s constitutive law of SMA for the prediction of internal stresses is successfully developed for SMA composites, based on the principle of minimum complementary energy. A typical two-cylinder model consisting of a single SMA fiber surrounded by epoxy matrix is employed to analyze the stress distributions in the SMA fiber, the matrix, and at the interface, with important contributions of the thermo-mechanical effect and the shape memory effect. Assumed stress functions that satisfy equilibrium equations in the fiber and matrix respectively are utilized, as well as the principle of minimum complementary energy, to analyze the internal stress distributions during fiber pull-out and the thermal loading process. The entire range of axisymmetric states of stresses in the SMA fiber and matrix are developed. The results indicate substantial variation in stress distribution profiles for different activation and loading scenarios.  相似文献   

18.
以AZ31镁合金为基体,TiNi形状记忆合金丝为增强体,利用放电等离子烧结法(SPS)制备了TiNi/Mg复合材料,用OM、SEM、EDS对其微观形貌进行表征,并用XRD及DSC研究TiNi丝的相变,同时对该复合材料进行准静态拉伸实验,对其室温及高温力学性能进行研究。结果表明,所制备的TiNi/Mg复合材料中界面处存在Mg、Ti、Ni元素的互扩散现象,并形成宽度约为2 μm的互扩散层;所制备的TiNi/Mg复合材料的高温力学性能高于室温,其中其屈服强度、抗拉强度及弹性模量在100℃时(分别为157 MPa,292 MPa,22 GPa)较室温分别提高了12%、33%和29%,150℃时(分别为143 MPa,251 MPa,20 GPa)较室温分别提高了2%、14%和18%。  相似文献   

19.
利用激光对玻璃纤维、玄武岩纤维和碳纤维进行表面改性后,以环氧树脂为基体,分别制备三种纤维增强环氧树脂复合材料。利用SEM和万能试验机对表面改性前后的碳纤维形态、力学性能及三种纤维/环氧树脂复合材料的力学性能和断面形貌进行表征,研究了纤维激光表面改性对三种纤维及其增强环氧树脂复合材料力学性能的影响。结果表明:激光表面改性对碳纤维/环氧树脂复合材料的力学性能提升最高,其拉伸强度最大提高了77.06%,冲击强度最大提高了31.25%,玄武岩纤维/环氧树脂复合材料的力学性能提升次之,而玻璃纤维/环氧树脂复合材料的力学性能有所下降。因此,激光进行表面改性适用于碳纤维和玄武岩纤维。  相似文献   

20.
Accurate stress–strain constitutive properties are essential for understanding the complex deformation and failure mechanisms for materials with highly anisotropic mechanical properties. Among such materials, glass-fiber- and carbon-fiber-reinforced polymer–matrix composites play a critical role in advanced structural designs. The large number of different methods and specimen types currently required to generate three-dimensional allowables for structural design slows down the material characterization. Also, some of the material constitutive properties are never measured due to the prohibitive cost of the specimens needed. This work shows that simple short-beam shear (SBS) specimens are well-suited for measurement of multiple constitutive properties for composite materials and that can enable a major shift toward accurate material characterization. The material characterization is based on the digital image correlation (DIC) full-field deformation measurement. Two key elements show advantage of using DIC in the SBS tests. First, tensile, compressive, and shear stress–strain relations are measured in a single experiment. Second, a counter-intuitive feasibility of closed-form stress and modulus models, normally applicable to long beams, is demonstrated for short-beam specimens. The modulus and stress–strain data are presented for glass/epoxy and carbon/epoxy material systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号