首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Y. Zhuk  I. Guz  C. Soutis   《Composites Part B》2001,32(8):65-709
The in-plane compressive behaviour of thin-skin stiffened composite panels with a stress concentrator in the form of an open hole or low velocity impact damage is examined analytically. Drop weight impact in laminated polymer composites causes matrix cracking, delaminations and fibre breakage, which together can seriously degrade the laminate compressive strength. Experimental studies, using ultrasonic C-scan images and X-ray shadow radiography, indicated that the overall damage resembles a hole. Under uniaxial compression loading, 0° fibre microbuckling surrounded by delamination grows laterally (like a crack) from the impact site as the applied load is increased. These local buckled regions continued to propagate, first in discrete increments and then rapidly at failure load. The damage pattern is very similar to that observed in laminated plates with open holes loaded in compression. Because of this resemblance, a fracture mechanics model, developed initially to predict notched compressive strength, was applied to estimate the compression-after-impact (CAI) strength of a stiffened panel; in the analysis the impact damage is replaced with an equivalent open hole. Also, the maximum stress failure criterion is employed to estimate the residual compressive strength of the panel. The unnotched compressive strength of the composite laminate required in the analysis is obtained from a three-dimensional stability theory of deformable bodies. The influence of the stiffener on the compressive strength of the thin-skin panel is examined and included in the analysis. A good agreement between experimental measurements and predicted values for the critical failure load is obtained.  相似文献   

2.
基于ABAQUS有限元软件结合VC++6.0程序设计,建立了含不同铺层角度、不同排列密度形状记忆合金(SMA)纤维的复合材料层合板有限元模型。将基于Brinson本构模型的SMA分段线性超弹性模型以及判断复合材料层内失效的三维HASHIN失效准则编译至ABAQUS/VUMAT子程序,使用界面单元模拟复合材料层间区域,建立了SMA复合材料层合板的低速冲击损伤及冲击后剩余强度数值模拟方法。对比了不含SMA纤维层合板、含SMA纤维层合板、含普通金属丝层合板在不同冲击能量下的损伤响应。进一步分析了SMA纤维体积分数和直径变化对冲击响应的影响。冲击后剩余压缩强度模拟结果表明:冲击能量为16J时,含体积分数25%、直径0.5mm的SMA纤维层合板的冲击后剩余压缩强度相比不含SMA纤维层合板提高5.78%、相比含普通金属丝层合板提高4.69%。随着SMA纤维体积分数提高,层合板的抗低速冲击能力增强,当体积分数一定时,较细的(0.3mm)SMA纤维比粗的(0.6mm)SMA纤维对层合板的抗低速冲击能力增强效果更好。  相似文献   

3.
The aim of this paper is to present an experimental study of impact and compression after impact (CAI) tests performed on composite laminate covered with a cork thermal shield (TS) intended for launchers fairing. Drop weight impact tests have been performed on composite laminate sheets with and without TS in order to study its effect on the impact damage. The results show the TS is a good mechanical protection towards impact as well as a good impact revealing material. Nevertheless, totally different damage morphology is obtained during the impact test with or without TS, and in particular at high impact energy, the delaminated area is larger with TS. Afterwards, CAI tests have been performed in order to evaluate the TS effect on the residual strength. The TS appears to increase the residual strength for a same impact energy, but at the same time, it presents a decrease in residual strength before observing delamination. In fact, during the impact tests with TS, invisible fibres’ breakages appear before delamination damage contrary to the impacts on the unshielded sheets.  相似文献   

4.
In this paper, low-velocity impact characteristics and residual tensile strength of carbon fiber composite laminates are investigated by experimentally and numerically. Low-velocity impact tests and residual tensile strength tests are performed using an instrumented drop-weight machine (Instron 9250HV) and static test machine (Instron 5569), respectively. The finite element (FE) software, ABAQUS/Explicit is employed to simulate low-velocity impact characteristics and predict residual tensile strength of carbon fiber composites laminates. These numerical investigations create a user-defined material subroutine (VUMAT) to enhance the damage simulation which includes Hashin and Yeh failure criteria. The impact contact force and the tensile strength are accurately estimated using the present method. Two different tensile damage modes after different impact energies are observed. The degradation of residual tensile strengths can be divided to three stages for different impact energies, and amplitudes of degradation are affected by stacking sequences.  相似文献   

5.
A finite element (FE) model using coupling continuum shell elements and cohesive elements is proposed to simulate the compression after impact (CAI) behaviour and predict the CAI strength of stitched composites. Continuum shell elements with Hashin failure criterion exhibit the composite laminate damage behaviour; whilst cohesive elements using traction-separation law characterise the laminate interfaces. Impact-induced delamination is explicitly modelled by reducing material properties of damaged cohesive elements. Computational results have demonstrated the trend of increasing CAI strength with decreasing impact-induced delamination area. Spring elements are introduced into the model to represent through-thickness stitch thread in the composite laminates. Results in this study validate experimental finding that CAI strength is improved when stitching is incorporated into the composite structure. The proposed FE model reveals good CAI strength predictions and indicates good agreement with experimental results, making it a valuable tool for CAI strength prediction of stitched composites.  相似文献   

6.
The post-impact performance of different carbon-fabric-reinforced composite materials were studied experimentally and analytically. Three types of thermosetting matrix were considered: conventional epoxy, high-temperature curing epoxy and epoxy-isocyanate. Experimental testing consisted of impacting rectangular specimens at different energy levels by using a spring-driven impact apparatus that was able to impart velocities of up to 5 m s−1 to masses of 0.5, 1.0, 2.5 and 5.0 kg travelling horizontally. After impact, coupons were non-destructively inspected by means of opaque-enhanced dye-penetrant X-radiography and tested in static compression to correlate impact energy, damage extent and residual strength. Epoxy composites contain damage within a narrow region, while epoxy-isocyanate materials propagate the damage far away from impact point. Epoxy composites show an asymptotically decreasing failure strength with impact energy up to a lower threshold (0.3–0.4 times that of the undamaged material), while epoxy-isocyanate material shows a trend of ever decreasing residual strength. An analytical study was performed by means of the finite element code PAM-FISS, used to simulate the compression-after-impact (CAI) tests. Type, size and location of damage, as well as the mechanisms leading to final failure, were reproduced quite well by the finite element analysis (FEA), while some discrepancies between FEA and experimental CAI residual strength tests were found (7% for undamaged specimens and 10% for blister-delaminated specimens); higher errors were found in the case of completely delaminated specimens, mainly owing to the inability of the present software and hardware to conveniently model the complete state of damage.  相似文献   

7.
An original, ply-level, computationally efficient, three-dimensional (3D) composite damage model is presented in this paper, which is applicable to predicting the low velocity impact response of unidirectional (UD) PMC laminates. The proposed model is implemented into the Finite Element (FE) code ABAQUS/Explicit for one-integration point solid elements and validated against low velocity impact experimental results.  相似文献   

8.
低速冲击作用下碳纤维复合材料铺层板的损伤分析   总被引:11,自引:4,他引:7       下载免费PDF全文
建立了一个有效计算模型, 以分析碳纤维复合材料层合板在低速冲击作用下的层内和层间失效行为。针对铺层板的层内损伤, 在基于应变描述的Hashin 失效准则的基础上, 建立了单层板的逐渐累积损伤分析模型;针对铺层板的脱层损伤, 建立了各向同性脱层损伤模型, 通过结合传统的应力失效准则和断裂力学中的能量释放率准则定义了界面损伤演化规律, 并在潜在产生脱层的区域模拟为粘结接触, 并将脱层损伤模型作为界面的接触行为。该计算模型通过商用有限元软件ABAQUS/ Explicit 的用户子程序实现。使用该计算模型对碳纤维增强环氧树脂复合材料层合板在横向低速冲击作用下的损伤和变形行为进行预测分析。数值仿真的结果与试验结果进行了比较, 取得了满意的结果, 验证了该模型的正确性。   相似文献   

9.
针对传统内聚力损伤模型(CZM)无法考虑层内裂纹对界面分层影响的缺点,提出了一种改进的适用于复合材料层合板低速冲击损伤模拟的CZM。通过对界面单元内聚力本构模型中的损伤起始准则进行修正,考虑了界面层相邻铺层内基体、纤维的损伤状态及应力分布对层间强度和分层扩展的影响。基于ABAQUS用户子程序VUMAT,结合本文模型及层合板失效判据,建立了模拟复合材料层合板在低速冲击作用下的渐进损伤过程的有限元模型,计算了不同铺层角度和材料属性的层合板在低速冲击作用下的损伤状态。通过数值模拟与试验结果的对比,验证了本文方法的精度及合理性。  相似文献   

10.
在ABAQUS分析平台中建立了缝合泡沫夹层复合材料在低速冲击下的动力学有限元模型,采用杆单元模拟缝线树脂柱的作用,基于Hashin破坏准则模拟层板面内损伤,通过各向同性硬化本构模型利用等效塑性变形模拟泡沫夹芯损伤演化。针对相同铺层的缝合和未缝合泡沫夹层结构,模拟了相同冲击能量下的低速冲击响应过程及面板、泡沫的损伤情况,数值结果与实验结果吻合较好,证明了该方法的有效性和准确性。研究结果表明,在低速冲击下,泡沫夹层结构引入缝线后虽然降低了泡沫缓冲吸能的作用,使得面板表面受到较大的冲击破坏,但增强了整体刚度,增大了面板抵抗弯曲变形的能力,减小了内部面板的损伤,使其在改善复合材料面板易分层缺陷的同时还依然拥有优良的面内性能。  相似文献   

11.
The effects of shape memory alloy thin films embedded in composite plates for improving damage resistance of composite structures under low velocity impact were investigated numerically. Analysis model for SMA thin film was developed based on Lagoudas’ model and implemented using the user defined material subroutine of the ABAQUS/Explicit finite element program. Composite damage model based on the Chang–Chang failure criteria was also implemented to consider progressive damage behavior. The finite element simulation of low velocity impact behavior of a shape memory alloy hybrid composite plate was performed using the ABAQUS/Explicit program. Parametric studies were performed to investigate the effect of shape memory alloys for improving damage resistance of composite plate.  相似文献   

12.
This paper presents ballistic impact damages of 3-D orthogonal woven composite in finite element analysis (FEA) and experimental. A unit-cell model of the 3-D woven composite was developed to define the material behavior and failure evolution. A user-defined subroutine VUAMT was compiled and connected with commercial available FEA code ABAQUS/Explicit to calculate the ballistic penetration. Ballistic impact tests were conducted to investigate impact damage of 3-D kevlar/glass hybrid woven composite. Residual velocities of conically-cylindrical steel projectiles (Type 56 in China Military Standard) and impact damage of the composite targets after ballistic perforation were compared both in theoretical and experimental. The reasonable agreements between FEA results and experimental results prove the validity of the unit-cell model in ballistic limit prediction of the 3-D woven composite. We believe such an effort could be extended to bulletproof armor design with the 3-D woven composite.  相似文献   

13.
Compression-after-impact (CAI) strength of foam-cored sandwich panels with composite face sheets is investigated experimentally. The low-velocity impact by a semi-spherical (blunt) projectile is considered, producing a damage mainly in a form of core crushing accompanied by a permanent indentation (residual dent) in the face sheet. Instrumentation of the panels by strain gauges and digital speckle photography analysis are used to study the effect of damage on failure mechanisms in the panel. Residual dent growth inwards toward the mid-plane of a sandwich panel followed by a complete separation of the face sheet is identified as the failure mode. CAI strength of sandwich panels is shown to decrease with increasing impact damage size. Destructive sectioning of sandwich panels is used to characterise damage parameters and morphology for implementation in a finite element model. The finite element model that accounts for relevant details of impact damage morphology is developed and proposed for failure analysis and CAI strength predictions of damaged panels demonstrating a good correlation with experimental results.  相似文献   

14.
提出考虑层合板面内(纤维和基体失效)和层间失效的复合材料连续损伤力学模型,对螺栓接头的渐进失效行为进行预测。基于Tsai-Wu强度准则,发展可以判定复合材料面内和层间失效的强度准则。采用幂指数衰减材料退化模型模拟复合材料的损伤扩展过程。建立连续损伤力学模型用以研究0°铺层比例和螺栓直径对复合材料螺栓接头挤压性能的影响,预测结果与实验结果吻合。结果表明:0°铺层比例过高,接头发生剪切破坏,降低连接结构承载能力;增大螺栓直径,层合板损伤受到抑制,可提高复合材料螺栓接头的挤压强度。   相似文献   

15.
The emergence of advanced computational methods and theoretical models for damage progression in composites has heralded the promise of virtual testing of composite structures with orthotropic lay-ups, complex geometries and multiple material systems. Recent studies have revealed that specimen size and material orthotropy has a major effect on the open hole tension (OHT) strength of composite laminates. The aim of this investigation is develop a progressive failure model for orthotropic composite laminates, employing stepwise discretization of the traction–separation relationship, to predict the effect of specimen size and laminate orthotropy on the OHT strength. The results show that a significant interaction exists between delamination and in-plane damage, so that models without considering delamination would over-predict strength. Furthermore, it is found that the increase in fracture toughness of blocked plies must be incorporated in the model to achieve good correlation with experimental results.  相似文献   

16.
In this study the perforation of composite sandwich structures subjected to high-velocity impact was analysed. Sandwich panels with carbon/epoxy skins and an aluminium honeycomb core were modelled by a three-dimensional finite element model implemented in ABAQUS/Explicit. The model was validated with experimental tests by comparing numerical and experimental residual velocity, ballistic limit, and contact time. By this model the influence of the components on the behaviour of the sandwich panel under impact load was evaluated; also, the contribution of the failure mechanisms to the energy-absorption of the projectile kinetic energy was determined.  相似文献   

17.
Impacts on pressure vessels, produced by winding glass fibre with vinyl ester resin over a polyethylene liner, were numerically and experimentally investigated in the current work.Pressure vessels were experimentally tested under low velocity impact loads. Different locations and incident energies were tested in order to evaluate the induced damage and the capability of the developed numerical model.An advanced 3-D FE model was used for simulating the impact events. It is based on the combined use of interlaminar and intralaminar damage models. Puck and Hashin failure theories were used to evaluate the intralaminar damages (matrix cracking and fibre failure). Cohesive zone theory, by mean of cohesive elements, was used for modelling delamination onset and propagation.The experimental impact curves were accurately predicted by the numerical model for the different impact locations and energies. The overall damages, both intralaminar and interlaminar, were instead slightly over predicted for all the configurations.The model capabilities to simulate the low velocity impact events on the full scale composite structures were proved.  相似文献   

18.
L. Lv  B. Sun  B. Gu 《Strain》2011,47(Z1):e52-e65
Abstract: This paper evaluates the transverse impact damage of a 3‐D biaxial spacer weft‐knitted composite using experimental results and complimentary finite element analysis. The load–displacement curves and damage morphologies during impact loading were obtained to analyse energy absorption and impact damage mechanisms of the knitted composite. A unit‐cell model based on the microstructure of the 3‐D knitted composite was established to calculate the deformation and damage evolution when the composite is impacted by a hemisphere‐ended steel rod. An elastoplastic constitutive equation is incorporated into the unit‐cell model and the critical damage area failure theory developed by Hahn and Tsai has been implemented as a user‐defined material law (VUMAT) for commercial available finite element code ABAQUS/Explicit. The load–displacement curves, impact damages and impact energy absorption obtained from ABAQUS/Explicit are compared with those FROM experiments. The good agreement of the comparisons supports the validity of the unit‐cell model and user‐defined subroutine VUMAT. The unit‐cell model can also be extended to evaluate the impact crashworthiness of engineering structures made out of the 3‐D knitted composites.  相似文献   

19.
Knitted composites have higher failure deformation and energy absorption capacity under impact than other textile structural composites because of the yarn loop structures in knitted performs. Here we report the transverse impact behavior of a new kind of 3-D multi-structured knitted composite both in experimental and finite element simulation. The knitted composite is composed of two knitted fabrics: biaxial warp knitted fabric and interlock knitted fabric. The transverse impact behaviors of the 3-D knitted composite were tested with a modified split Hopkinson pressure bar (SHPB) apparatus. The load–displacement curves and damage morphologies were obtained to analyze the energy absorptions and impact damage mechanisms of the composite under different impact velocities. A unit-cell model based on the microstructure of the 3-D knitted composite was established to determine the composite deformation and damage when the composite impacted by a hemisphere-ended steel rod. Incorporated with the unit-cell model, a elasto-plastic constitute equation of the 3-D knitted composite and the critical damage area (CDA) failure theory of composites have been implemented as a vectorized user defined material law (VUMAT) for ABAQUS/Explicit. The load–displacement curves, impact deformations and damages obtained from FEM are compared with those in experimental. The good agreements of the comparisons prove the validity of the unit-cell model and user-defined subroutine VUMAT. This manifests the applicability of the VUMAT to characterization and design of the 3-D multi-structured knitted composite structures under other impulsive loading conditions.  相似文献   

20.
This paper reports on the actual and virtual low velocity impact response of carbon fibre composite laminates. It utilises the contribution of through-thickness stresses, in the prediction of the onset of internal damage created by this type impact scenario.The paper focuses on the damage imparted by the flat nose impactor since this induces a different type of damage and structural response compared to that of the standard test method of using a round nose impactor.Vulnerability of the fibrous composites to vertical drop-weight impact can result in premature failure which is a major concern in their widespread usage. The topic has been of intense research to design more damage tolerant and resistant materials. However, due to materials’ anisotropic and three-dimensional nature and complicated damage mechanisms no standard model could have been achieved. Designers predict consequences of a local impact within the global structural context without full-scale testing.Majority of the existing simulation models neglect through-thickness stresses that are regarded as the major cause of catastrophic failures. Efficient and reliable investigations are required to reduce testing and include through-thickness stresses. Drop-weight impact simulation models were developed herein using ABAQUS™ software. Simulations were carried out to compute in-plane stresses subjected to flat and round nose impacts on laminates of differing thicknesses. These stresses once computed were numerically integrated employing the equilibrium equations to efficiently predict through-thickness stresses. The predicted stresses were then utilised in failure criteria to quantify the coupled and embedded damage. This provides a quick insight into the status and contribution of through-thickness stresses in failure predictions. The computed values were compared to the experimental results and found to be in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号