首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Low-velocity impact damage can drastically reduce the residual strength of a composite structure even when the damage is barely visible. The ability to computationally predict the extent of damage and compression-after-impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant time and cost penalties. A high-fidelity three-dimensional composite damage model, to predict both low-velocity impact damage and CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The intralaminar damage model component accounts for physically-based tensile and compressive failure mechanisms, of the fibres and matrix, when subjected to a three-dimensional stress state. Cohesive behaviour was employed to model the interlaminar failure between plies with a bi-linear traction–separation law for capturing damage onset and subsequent damage evolution. The virtual tests, set up in ABAQUS/Explicit, were executed in three steps, one to capture the impact damage, the second to stabilize the specimen by imposing new boundary conditions required for compression testing, and the third to predict the CAI strength. The observed intralaminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing without the need of model calibration which is often required with other damage models.  相似文献   

2.
A finite element (FE) model using coupling continuum shell elements and cohesive elements is proposed to simulate the compression after impact (CAI) behaviour and predict the CAI strength of stitched composites. Continuum shell elements with Hashin failure criterion exhibit the composite laminate damage behaviour; whilst cohesive elements using traction-separation law characterise the laminate interfaces. Impact-induced delamination is explicitly modelled by reducing material properties of damaged cohesive elements. Computational results have demonstrated the trend of increasing CAI strength with decreasing impact-induced delamination area. Spring elements are introduced into the model to represent through-thickness stitch thread in the composite laminates. Results in this study validate experimental finding that CAI strength is improved when stitching is incorporated into the composite structure. The proposed FE model reveals good CAI strength predictions and indicates good agreement with experimental results, making it a valuable tool for CAI strength prediction of stitched composites.  相似文献   

3.
In this paper, flexural loading of woven carbon fabric-reinforced polymer laminates is studied using a combination of experimental material characterisation, microscopic damage analysis and numerical simulations. Mechanical behaviour of these materials was quantified by carrying out tensile and large-deflection bending tests. A substantial difference was found between the materials' tensile and flexural properties due to a size effect and stress stiffening of thin laminates. A digital image-correlation technique capable of full-field strain-measurement was used to determine in-plane shear properties of the studied materials. Optical microscopy and micro-computed tomography were employed to investigate deformation and damage mechanisms in the specimens fractured in bending. Various damage modes such as matrix cracking, delaminations, tow debonding and fibre fracture were observed in these microstructural studies. A two-dimensional finite-element (FE) model was developed to analyse the onset and propagation of inter-ply delamination and intra-ply fabric fracture as well as their coupling in the fractured specimen. The developed FE model provided a correct prediction of the material's flexural response and successfully simulated the sequence and interaction of damage modes observed experimentally.  相似文献   

4.
This investigation is motivated by the needs to quantify the load-carrying capacity of composite laminates with scarfed holes, a damage cut-out shape employed to achieve flush repairs of composites. Both experimental testing and analytical modelling were carried out to investigate the damage progression behaviour of composite laminates containing either straight-sided or scarfed holes. Hoop strains were recorded by strain gauges located along the scarf surface and the results indicate a much greater extent of damage progression than specimens containing straight-sided holes. Three different strength-prediction models were employed to quantify the residual strength, including an analytical cohesive zone model developed in this work, an analytical inherent-flaw fracture mechanics method and a finite element-based continuum damage model. Comparisons of the experimental results with the model predictions reveal that the continuum damage model, calibrated using data from coupons with straight-sided holes, provides promising correlation with experimental results.  相似文献   

5.
Monotonic, multi-step and cyclic short beam shear tests were conducted on 2D and 3D woven composites. The test results were used to determine the effect of z-yarns on the inter-laminar shear strength as well as the multi-loading behavior. The presence of z-yarns was found to affect not only the inter-laminar shear strength of the composite but also the behavior of the composite beyond the elastic limit. Microscopic examination of the damaged specimens revealed large delamination cracks in 2D woven composites while delamination cracks were hindered by z-yarns in 3D composites. This crack arrest phenomena resulted in a reduction in inter-laminar crack lengths and a higher distribution of the micro-cracks throughout the 3D composite. The multi-step and cyclic loading tests are found to be useful in the monitoring of specimen behavior during short beam shear testing. The induced damage was quantified in terms of the loss of strength and stiffness during each loading cycle. It was found that while the 2D composites have higher damage resistance, the 3D composites have a higher damage tolerance.  相似文献   

6.
This study examines the evolution of damage in graphite/epoxy composite laminates due to lightning strikes. To clarify the influence of lightning parameters and specimen size, artificial lightning testing was performed on a series of laminated composite specimens. Damage was assessed using visual inspection, ultrasonic testing, micro X-ray inspection, and sectional observation. The results showed that the damage modes can be categorized into fiber damage, resin deterioration, and internal delamination modes. Damage progression is governed by the strong electrical orthotropic properties of the laminates, and the lightning parameters defining impulse waveform show strong relationship with certain damage modes, though specimen size and thickness variation barely affect damage size.  相似文献   

7.
The aim of this paper is to present an experimental study of impact and compression after impact (CAI) tests performed on composite laminate covered with a cork thermal shield (TS) intended for launchers fairing. Drop weight impact tests have been performed on composite laminate sheets with and without TS in order to study its effect on the impact damage. The results show the TS is a good mechanical protection towards impact as well as a good impact revealing material. Nevertheless, totally different damage morphology is obtained during the impact test with or without TS, and in particular at high impact energy, the delaminated area is larger with TS. Afterwards, CAI tests have been performed in order to evaluate the TS effect on the residual strength. The TS appears to increase the residual strength for a same impact energy, but at the same time, it presents a decrease in residual strength before observing delamination. In fact, during the impact tests with TS, invisible fibres’ breakages appear before delamination damage contrary to the impacts on the unshielded sheets.  相似文献   

8.
Discrete damage mechanics (DDM) refers to micromechanics of damage constitutive models that, when incorporated into commercial finite element software via user material subroutines, are able to predict intralaminar transverse and shear damage initiation and evolution in terms of the fracture toughness of the composite. A methodology for determination of the fracture toughness is presented, based on fitting DDM model results to available experimental data. The applicability of the DDM model is studied by comparison to available experimental data for Carbon Epoxy laminates. Sensitivity of the DDM model to h- and p-refinement is studied. Also, prediction of modulus vs. applied strain is contrasted with ply discount results and the effect of in situ correction of strength is highlighted.  相似文献   

9.
In this paper, the damage failure and behaviour of stitched composites under compression after impact (CAI) loading are experimentally investigated. This study focuses on the effect of stitch density and stitch thread thickness on the CAI strength and response of laminated composites reinforced by through-thickness stitching. Experimental findings show that stitched composites have higher CAI failure load and displacement, which corresponds to higher energy absorption during CAI damage, mainly attributed to greater energy consumption by stitch fibre rupture. The coupling relationships between CAI strength, impact energy, stitch density and stitch thread thickness are also revealed. It is understood that the effectiveness of stitching has high dependency on the applied impact energy. At low impact energy range, CAI strength is found to be solely dependent on stitch density, showing no influence of stitch thread thickness. It is however observed that stitch fibre bridging is rendered ineffective in moderately stitched laminates during compressive failure, as local buckling occurs between stitch threads, resulting in unstitched and moderately stitched laminates have similar CAI strength. The CAI strength of densely stitched laminates is much higher due to effective stitch fibre bridging and numerous stitch thread breakages. At high impact energy level, CAI strength is discovered to be intimately related to both stitch density and stitch thread thickness. Since CAI failure initiates from impact-induced delamination area, stitch fibre bridging is considerable for all specimens due to the relatively large delamination area present. Stitch threads effectively bridge the delaminated area, inhibit local buckling and suppress delamination propagation, thus leading to increased CAI strength for laminates stitched with higher stitch density and larger stitch thread thickness. Fracture mechanisms and crack bridging phenomenon, elucidated by X-ray radiography are also presented and discussed. This study reveals novel understanding on the effectiveness of stitch parameters for improving impact tolerance of stitched composites.  相似文献   

10.
Local buckling of stitched composite laminate   总被引:1,自引:0,他引:1  
Due to relatively low interlaminar strength, delamination is a common failure mode of composite laminates. Through-thickness stitching is shown to improve the delamination resistance of laminated composites. Under in-plane compressive loading, significant strength reduction occurs due to coupling between delamination and delamination buckling. In this paper, an energy-based model was developed to predict the effect of critical stitching parameters on the delamination buckling strength of stitched laminates. Excellent agreement was found between the model results and a corresponding finite element analysis.  相似文献   

11.
Negative size effects are commonly reported for advanced composite materials where the strength of the material decreases with increasing volume of the test specimen. In this work, the effect of increasing specimen volume on the mechanical properties of all-cellulose composites is examined by varying the laminate thickness. A positive size effect is observed in all-cellulose composite laminates as demonstrated by a 32.8% increase in tensile strength as the laminate thickness is increased by 7 times. The damage evolution in all-cellulose composite laminates was examined as a function of the tensile strain. Enhanced damage tolerance concomitant with increasing specimen volume is associated with damage accumulation due to transverse cracking and strain delocalisation. A transition from low-strain failure to tough and high-strain failure is observed as the laminate thickness is increased. Simultaneously, scale effects lead to an increase in the void content and cellulose crystallinity at the core, with increasing laminate thickness.  相似文献   

12.
Dynamic compressive strength of quasi-isotropic fiber composite is investigated experimentally and also numerically simulated. In-plane compression tests at strain rates around 400/s quasi-isotropic laminates were performed using the Split Hopkinson Pressure Bar (SHPB). The material system used was Texipreg® HS160 REM, comprising high strength unidirectional carbon fiber and epoxy resin. The dynamic strength of quasi-isotropic laminates exhibits a considerable increase when compared to the static values. The finite-element model used ABAQUS™ three-dimensional solid elements C3D8I with 8 nodes and user-defined interface finite elements with 8 nodes [Gonçalves JPM, de Moura MFSF, de Castro PMST, Marques AT. Interface element including point-to-surface constraints for three-dimensional problems with damage propagation. Eng Comp: Int J Comput Aided Eng Software 2000;17(1):28–47; de Moura MFSF, Pereira AB, de Morais AB. Influence of intralaminar cracking on the apparent interlaminar mode I fracture toughness of cross-ply laminates. Fatigue Fract Eng Mater Struct 2004;27(9):759–66.]. These interface elements which connect the three-dimensional solid elements modeling the composite layers, include a cohesive damage model allowing the simulation of delamination initiation and propagation. Hence the present model assumes that the phenomenon of failure under these conditions is mainly dictated by interface delamination. This is supported by experimental tests which showed that all quasi-isotropic laminates split into several almost intact sublaminates. The model compares very well with experimental results, confirming the formulated hypothesis that the internal layer damage does not markedly contribute to the quasi-isotropic laminate failure.  相似文献   

13.
Multi-scale ballistic material modeling of cross-plied compliant composites   总被引:1,自引:0,他引:1  
The open-literature material properties for fiber and polymeric matrix, unit-cell microstructural characteristics, atomic-level simulations and unit-cell based finite-element analyses are all used to construct a new continuum-type ballistic material model for 0°/90° cross-plied highly-oriented polyethylene fiber-based armor-grade composite laminates. The material model is formulated in such a way that it can be readily implemented into commercial finite-element programs like ANSYS/Autodyn [ANSYS/Autodyn version 11.0, User Documentation, Century Dynamics Inc. a subsidiary of ANSYS Inc. (2007)] and ABAQUS/Explicit [ABAQUS version 6.7, User Documentation, Dessault Systems, 2007] as a User Material Subroutine. Model validation included a series of transient non-linear dynamics simulations of the transverse impact of armor-grade composite laminates with two types of projectiles, which are next compared with their experimental counterparts. This comparison revealed that a reasonably good agreement is obtained between the experimental and the computational analyses with respect to: (a) the composite laminates’ capability, at different areal densities, to defeat the bullets with different impact velocities; (b) post-mortem spatial distribution of damage within the laminates; (c) the temporal evolution of composite armor laminate back-face bulging and delamination; and (d) the existence of three distinct penetration stages (i.e. an initial filament shearing/cutting dominated stage, an intermediate stage characterized by pronounced filament/matrix de-bonding/decohesion and the final stage associated with the extensive back-face delamination and bulging of the armor panel).  相似文献   

14.
A new approach is developed to implement the cohesive zone concept for the simulation of delamination in fibre composites or crack growth in adhesive joints in tension or shear mode of fracture. The model adopts a bilinear damage evolution law, and uses critical energy release rate as the energy required for generating fully damaged unit area. Multi-axial-stress criterion is used to govern the damage initiation so that the model is able to show the hydrostatic stress effect on the damage development. The damage material model is implemented in a finite element model consisting of continuum solid elements to mimic the damage development. The validity of the model was firstly examined by simulating delamination growth in pre-cracked coupon specimens of fibre composites: the double-cantilever beam test, the end-notched flexure test and the end-loaded split test, with either stable or unstable crack growth. The model was then used to simulate damage initiation in a composite specimen for delamination without a starting defect (or a pre-crack). The results were compared with those from the same finite element model (FEM) but based on a traditional damage initiation criterion and those from the experimental studies, for the physical locations of the delamination initiation and the final crack size developed. The paper also presents a parametric study that investigates the influence of material strength on the damage initiation for delamination.  相似文献   

15.
The effects of hygrothermal conditions on damage development in quasi-isotropic carbon-fiber/epoxy laminates are described. First, monotonic and loading/unloading tensile tests were conducted on dry and wet specimens at ambient and high temperatures to compare the stress/strain response and damage development. The changes in the Young's modulus and Poisson's ratio were obtained experimentally from the monotonic tensile tests. The critical stresses for transverse cracking and delamination for the above three conditions are compared. The delamination area is measured by using scanning acoustic microscopy (SAM) at various loads to discuss the effects of delamination on the nonlinear stress/strain behavior. Next, the stress distributions under tensile load including hygrothermal residual stresses are computed by a finite-element code and their effects on damage initiation are discussed. Finally, a simple model for the prediction of the Young's modulus of a delaminated specimen is proposed. It is found that moisture increases the critical stresses for transverse cracking and delamination by reducing the residual stresses while high temperature decreases the critical stresses in spite of relaxation of the residual stresses. The results of the finite-element analysis provide some explanations for the onset of transverse cracking and delamination. The Young's modulus predicted by the present model agrees with experimental results better than that predicted by conventional models.  相似文献   

16.
The compression after impact (CAI) strength of fully orthotropic composite laminates with up to 21 plies is presented, as analysed by an existing strip model. Candidate layups, which can be symmetric, anti-symmetric or non-symmetric, are preselected to exhibit no elastic coupling response, with manufacturing rules applied. These criteria, along with the use of a simple surrogate sublaminate buckling model, were chosen to allow analysis of all feasible laminates in the design space without excessive computation time. Results indicate that although the inclusion of non-symmetric layups in the design space does not give benefits with respect to maximum achievable damage tolerance, these laminates can exhibit damage tolerance close to that of an anti-symmetric design for some ply counts, and better than symmetric solutions in most cases. It is also noted that in some instances increasing the number of plies in a laminate can actually reduce the highest achievable threshold load for damage tolerance, as a result of the large influence Poisson’s ratio has on sublaminate buckling. Average errors in the surrogate model were low in all cases, with maximum non-conservative errors less than 1%. The surrogate buckling model reduced computational time by over 99% when compared to the fully exhaustive search.  相似文献   

17.
A fatigue model developed for composite laminates and based on the cycle-by-cycle probability of failure has been modified to account for damage creation and evolution and its effect on cycles to failure. The residual strength of different parts of the laminate is determined during cyclic loading and damage such as matrix cracking is quantified along with its effect on load redistribution and cycles to failure of different parts of the laminate. The model does not require any curve fitting or experimentally measured data other than basic material static strength values and their associated experimental scatter. The model is applied to uni-directional and cross-ply laminates. A stress-based approach using energy minimization and calculus of variations is used. The model predictions range from fair to excellent.  相似文献   

18.
Effects of temperature on impact damages in CFRP composite laminates   总被引:1,自引:0,他引:1  
In this paper, the effect of temperature variations (low and high temperatures) was studied experimentally on impact damage to CFRP laminates. The composite laminates used in this experiment were CF/EPOXY orthotropic laminated plates with lay-up [06/906]s and [04/904]s, and CF/PEEK orthotropic laminated plates with a lay-up of [06/906]s. A steel ball launched by the air gun was used to generate the CFRP laminate impact damage. For impact-damaged specimens, nondestructive evaluation (NDE), such as a scanning acoustic microscopy (SAM) was performed on the delamination-damaged samples to characterize damage growth at different temperatures.

Therefore, this study was undertaken to experimentally determine the interrelations between impact energy and impact damage (i.e. the delamination area and matrix) of CFRP laminates (CF/EPOXY and CF/PEEK) subjected to foreign object damages (FOD) at low and high temperatures.  相似文献   


19.
Compression fatigue failure of CFRP laminates with impact damage   总被引:2,自引:0,他引:2  
The objective of this study is to investigate failure mechanisms of impact-damaged CFRP laminates subjected to compression fatigue. Two kinds of composite materials, UT500/Epoxy and AS4/PEEK, were used to examine the dependence of failure behavior on the material properties such as interlaminar toughness. Impact-induced delaminations in the UT500/Epoxy specimen were considerably larger than those in the AS4/PEEK specimen. The SN curves for the UT500/Epoxy specimens with impact damage exhibited a similar tendency to those without impact. The impact-induced delamination in the UT500/Epoxy specimen grew widthwise to the free edge on the rear side of the specimen during the fatigue test. On the other hand, the AS4/PEEK specimens without impact exhibited a more steeply declining SN curve than those with impact damage. The delaminations in the impacted AS4/PEEK specimen did not reach the free edge before the fatigue fracture.  相似文献   

20.
Following the onset of damage caused by an impact load on a composite laminate structure, delaminations often form propagating outwards from the point of impact and in some cases can migrate via matrix cracks between plies as they grow. The goal of the present study is to develop an accurate finite element modeling technique for simulation of the delamination–migration phenomena in laminate impact damage processes. An experiment was devised where, under a quasi-static indentation load, an embedded delamination in the facesheet of a laminate sandwich specimen migrates via a transverse matrix crack and then continues to grow on a new ply interface. Using data from this test for validation purposes, several finite element damage simulation methods were investigated. Comparing the experimental results with those of the different models reveals certain modeling features that are important to include in a numerical simulation of delamination–migration and some that may be neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号