首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
以高纯金属锰粉和碳酸锂为原料,通过机械活化氧化法合成了尖晶石LiMn2O4材料。采用X射线衍射(XRD)和扫描电镜(SEM)对LiMn2O4样品结构及形貌进行表征,用充放电测试和交流阻抗技术对LiMn2O4样品进行电化学性能研究。结果表明,所制备的LiMn2O4具有完整的尖晶石型结构,且颗粒形貌规整,颗粒大小均匀。所制备的LiMn2O4材料室温(25℃)在3.0~4.3V电压范围,在0.1C倍率下首次放电比容量为125.8mAh/g;2C首次放电容量为120.1mAh/g,300次循环后放电容量保持103.9mAh/g,容量保持率为86.51%。且样品具有较好的高温性能和较小的阻抗。  相似文献   

2.
以FeSO_4·7H_2O,LiOH·H_2O和H_3PO_4为原料,葡萄糖为改性剂,采用微波水热法合成具有正交晶系橄榄石结构的LiFePO_4/C复合材料。借助XRD,SEM,EDS和电化学性能测试等分析,研究葡萄糖对产物组成、结构、微观形貌和电化学性能的影响。结果表明:葡萄糖改性后,LiFePO_4结构中Fe,P和O原子间的结合增强,颗粒尺寸减小,表面有碳层包覆,电化学性能提高。LiFePO4/C在0.1C倍率下的首次放电比容量为125.6mAh/g;1.0C倍率下的首次放电比容量为106.2mAh/g,30次循环后的容量保持率为91.3%。  相似文献   

3.
碳源对LiFePO_4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
以FePO_4·2H_2O、Li_2CO_3和柠檬酸/酒石酸/抗坏血酸为原料,经机械球磨后在惰性气氛中高温煅烧合成LiFePO_4/C正极材料.研究了不同碳源对LiFePO_4结构、形貌及电化学性能的影响.重点考察了碳源为酒石酸时,不同合成温度对材料性能的影响.采用XRD、SEM以及电化学测试等手段对目标产物进行了结构表征和性能测试.结果表明,以酒石酸做碳源时,合成的正极材料物相单一,颗粒细小,粒度均匀,并且具有优良的电化学性能.在室温下以0.1C倍率充放电,首次放电比容量可达155mAh/g,1.0C首次放电比容量为120mAh/g,经过100次循环以后容量仍有109mAh/g.  相似文献   

4.
用传统的高温固相法合成了锂离子电池正极材料LiMn2 O4,LiMn2-x MxO4及LiMn2-xMxO4-yFy(x,y=0.05,M=Al,Mg).充放电结果表明,LiMn2-xMxO04及LiMn2-xMxO4-yFy的循环性能优于LiMn2O4,LiMn2-xMxO4-y,Fy的循环性能优于LiMn2-xMxO4.合成的Al、F共掺杂的材料在循环过程中电化学循环性能良好,首次放电容量为120.6mAh/g,40次循环后,放电容量为114.3mAh/g,容量保持率为94.8%;循环性能相当好,而且放电容量也高,所以有望作为优良的锂离子电池正极材料  相似文献   

5.
用共沉淀法制备了球形NH4FePO4·H2O前驱体,再与Li2CO3和葡萄糖混合用固相焙烧法制备了LiFePO4/C正极材料.利用正交实验考察了焙烧温度、焙烧时间、球磨时间、x(Li):x(Fe)和葡萄糖用量等对材料首次放电比容量的影响,得到了最佳工艺条件.通过XRD、SEM、FTIR和恒流充放电测试仪等测试了材料的结构和电化学性能.所得材料在室温下电流密度为0.1、0.5和1C时首次放电比容量分别为147.6、136.7和122.3mAh/g,循环50次后容量分别为142.8、127.3和106.7mAh/g;在60℃下电流密度为0.5C时,其首次放电比容量为163.8mAh/g,循环性能良好.  相似文献   

6.
以Mn3O4为前驱体的LiMn2O4及其电化学性能   总被引:11,自引:0,他引:11  
对传统的固相反应进行了改进,以控制结晶法合成出来的Mn3O4为前驱体,和LiOH混合煅烧,制备出锂离子电池正极活性材料尖晶石LiMn2O4。对由此方法得到的尖晶石LiMn2O4的结构和电化学性能进行了研究。通过X线光衍射和扫描电镜分析表明,该材料为纯相尖晶石LiMn2O4,不含其它杂质相,而且晶粒大小比较均匀;通过电化学性能测试表明,该尖晶石LiMn2O4具有良好的电化学性能:其首次放电比容量为128mAh/g,经过10次充放电循环后,其放电比容量仍有124mAh/g。  相似文献   

7.
以FePO4·xH2O为铁源与Li2CO3混合,以草酸为还原剂,在常温机械活化作用下合成出无定形态LiFePO4,然后低温热处理合成晶态的LiFePO4.考察了不同合成温度、时间对产物晶形结构、形貌和电化学性能的影响.结果表明,600℃热处理12h后制得的LiFePO4粒径细小且分布均匀,一次粒子粒径在100~200nm之间;该材料在0.1、0.2、0.5和1C下首次放电比容量分别为165、160、156和154mAh/g,50次循环后放电比容量分别为163、159.2、154.66和153.4mAh/g,容量保持率分别为98.8%、99.5%、99.1%和99.6%.  相似文献   

8.
通过葡萄糖辅助低温燃烧制备ZnO包覆型LiMn2O4,利用X射线衍射仪、扫描电子显微镜、循环伏安、交流阻抗以及恒流充放电测试等手段,研究了温度对产物晶体结构、微观形貌及电化学性能的影响。XRD结果表明所有产物均为单相尖晶石型LiMn2O4结构。SEM结果表明产物的颗粒尺寸随温度的升高而增大。电化学性能测试表明400℃和500℃制备的LiMn2O4/ZnO具有相对优异的电化学性能,室温1C条件下首次放电比容量分别为119.3mAh/g、116.3mAh/g,循环100次后容量保持率分别85.6%、87.8%。尖晶石LiMn2O4电极的阻抗谱特征与温度有关,电池的电化学性能主要受电荷转移电阻(Rct)影响。  相似文献   

9.
以FeC2O4·2H2O和LiH2PO4为原料,经过两步机械活化后在惰性气氛中经高温烧结,合成出LiFePO4正极材料.研究了合成温度与反应时间对材料性能的影响.采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌,结果表明,600℃下烧结18h合成的样品具有规则的橄榄石型结构.样品的电化学性能良好,在室温下以0.1C倍率充放电,首次放电比容量可达到155.6mAh/g,为其理论容量的91.53%,且循环50次后比容量仅衰减4.11%,采用1C倍率放电时,首次放电比容量达到149.3mAh/g.  相似文献   

10.
以Fe3+为铁源,采用控制结晶技术合成了纳米FePO4.xH2O,将FePO4.xH2O于500℃热处理4 h后得到纳米FePO4前驱体,然后通过碳热还原在不同温度下煅烧合成橄榄石结构的纳米LiFePO4/C样品.采用差热/热重、X射线衍射、扫描电镜、比表面测试、电化学性能测试等分析测试方法对纳米FePO4.xH2O、FePO4前驱体及不同煅烧温度下制得的纳米LiFePO4/C样品进行表征.研究结果表明,700℃烧结10 h合成LiFePO4/C样品的粒径在40~100 nm左右,比表面积为79.8 m2/g;700℃煅烧合成样品在电压2.5~4.2 V,倍率为0.1C、1C、5C、10C、15C时的放电比容量分别达到156.5、134.9、105.8、90.3和80.9 mAh/g,具有较好的倍率性能;样品还表现出较好的容量保持率.  相似文献   

11.
Spinel LiMn2O4 was synthesized by glycine-nitrate method and coated with CaCO3 in order to enhance the electrochemical performance at room temperature (250C) and 550C. The uncoated and CaCO3-coated LiMn2O4 materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. XRD and SEM results indicated that CaCO3 particles encapsulated the surface of the LiMn2O4 without causing any structural change. The charge-discharge tests showed that the specific discharge capacity fade of pristine electrode at 25 and 550C were 25.5% and 52%, respectively. However, surface modified cathode shows 7.4% and 29.5% loss compared to initial specific discharge capacity at 70th cycle for 25 and 550C, respectively. The improvement of electrochemical performance is attributed to suppression of Mn2+ dissolution into electrolyte via CaCO3 layer.  相似文献   

12.
高明  孙晓刚  程利  吁霁 《材料导报》2011,25(18):63-65
以多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)为添加相,对锰酸锂进行电化学性能改进,采用扫描电子显微镜对其进行观察,发现掺入的多壁碳纳米管均匀分布在锰酸锂颗粒表面。以改性后的锰酸锂为主要材料制成纽扣电池,采用交流阻抗及恒电流充放电等技术进行检测。结果表明,掺入1%MWCNTs后LiMn2O4的初始放电容量由改性前的123mAh/g下降到改性后的117mAh/g,在25℃经10次循环后容量保持率为97%,明显高于未掺入的91%。与未掺杂的LiMn2O4相比,虽然掺C或掺CNTs都使初始充放电容量有所降低,但是其循环性能明显提高。  相似文献   

13.
Well-defined spinel LiMn2O4 powders were synthesized via sintering a precursor, which was prepared by spraydrying method. The effects of sintering process on the structure and electrochemical properties of LiMn2O4 were discussed. It was found that a single sintering could not synthesize a pure LiMn2O4 compound, while two-step sintering procedure consisting of decomposing sprayed precursors at 350℃ and further sintering at an elevated temperature leads to the formation of a single-phased LiMn2O4 with homogeneous particle size distribution. As compared to that sintered in air, the two-step sintered LiMn2O4 in oxygen shows tighter structure and more uniform particle size, as well as better electrochemical properties. It delivers an initial discharge capacity of 131 mAh·g^-1 (1/10C), and still has excellent cycling stability at higher rate (1/5C).  相似文献   

14.
为改善LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的电化学性能,采用自制的磷酸铁纳米悬浮液,通过共沉淀法在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料表面包覆纳米磷酸铁。应用XRD,TG-DTA,TEM等手段表征制备的磷酸铁的结构,形貌和液相状态;通过XRD,SEM,EDS,TEM,ICP,恒流充放电、循环伏安、交流阻抗表征制备的包覆材料的结构、形貌及电化学性能。研究烧结温度和包覆量对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料电化学性能的影响。结果表明,热处理温度为400℃,2%(质量分数,下同)磷酸铁包覆能显著地改善LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的循环性能和倍率性能。循环伏安和交流阻抗结果显示,包覆磷酸铁后改善了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的可逆性和动力学性能。ICP测试结果表明,磷酸铁包覆层能够有效地降低电解液对正极材料的溶解与侵蚀,稳定其层状结构,从而提高正极材料的电化学性能。  相似文献   

15.
溶胶-凝胶法制备尖晶石锂锰氧正极材料   总被引:4,自引:0,他引:4  
以丙氨酸为螯合剂采用软化学法制备了锂锰氧化物.XRD分析结果表明所合成的产物为尖晶石型锰酸锂;采用SEM对产物的形貌进行了表征,结果表明所合成产物主要为棒状,且颗粒大小分布均匀.通过FT-IR及TG/DTA等手段初步探讨了产物的合成机理.采用循环充放电测试考察了产物的电化学性能,结果表明采用此法制备的产物具有优异的电化学性能.  相似文献   

16.
钴镍掺杂锰酸锂的电化学性能研究   总被引:1,自引:0,他引:1  
采用固相烧结法分别制备了钴掺杂和镍掺杂锰酸锂锂离子电池正极材料,同时制备了纯相锰酸锂进行比较.用电感耦合等离子发射光谱仪、X射线衍射仪、电子扫描电镜和电池性能测试系统对产物的组成、结构特征、微观表面形貌和恒流充放电性能进行了表征.结果表明:所制备的掺杂锰酸锂LiMn0.9 Ni0.1O2、LiMn0.9 Co0.1O2的结晶度高,无杂质相,材料颗粒的粒径均匀、表面光滑;首次放电比容量分别为114.7mAh/g和110.8mAh/g(0.5mA/cm,2.8~4.4V,vs.Li+/Li);50次循环后,放电比容量为107.2mAh/g和103.3mAh/g,50次循环比容量保持率分别达到94.1%和95.4%.  相似文献   

17.
彭正顺  马洁 《功能材料》1999,30(4):379-381
溶胶-凝胶-酯化方法是通过金属离子与多元有机酯的均一的螯合物。在较低的温度(〈250℃)下形成尖晶石型LiMN2O4正极材料。雇轩的LiMn2O4具有很好的电化学活性。Li=LiMn2O4二次电池首次充放电容量超过130mAh/g,循环10次以后容量仍然保持在120mAh/g的较高水平。  相似文献   

18.
以Mn_3O_4为前驱体的LiMn_2O_4及其电化学性能   总被引:3,自引:0,他引:3  
对传统的固相反应进行了改进,以控制结晶法合成出来的Mn3O4为前驱体,和LiOH混合煅烧,制备出锂离子电池正极活性材料尖晶石LiMn2O4。对由此方法得到的尖晶石LiMn2O4的结构和电化学性能进行了研究.通过X光衍射和扫描电镜分析表明,该材料为纯相尖晶石LiMn2O4,不含其它杂质相,而且晶粒大小比较均匀;通过电化学性能测试表明,该尖晶石LiMn2O4具有良好的电化学性能:其首次放电比容量为128mAh/g,经过10次充放电循环后,其放电比容量仍有 124mAh/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号