首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
以苯基三氯硅烷和间二乙炔基苯为主要原料,采用格氏试剂法制备了一种耐高温硅炔树脂聚(间二乙炔基苯-苯基氢硅烷)(PDBS);通过红外光谱、核磁共振和凝胶渗透色谱进行了结构表征,利用差示扫描量热分析、动态红外、流变分析和热重分析研究了聚合物的固化行为和耐热性能。结果表明,间二乙炔基苯与苯基三氯硅烷摩尔比的增加,能够提高PDBS树脂的相对分子质量。此外,随着树脂中硅含量的增加,其固化温度逐渐降低,热稳定性逐渐提高。PDBS树脂固化起始温度为175℃,其固化物具有良好的耐热性能,氮气氛围中失重5%时的温度(Td5)为627.3℃,1000℃时质量保留率为90.2%。  相似文献   

2.
采用二氯二苯基硅烷、硼酸、苯乙炔及正丁基锂为原料,氯铂酸催化法合成了三(二苯基苯乙炔硅氧)-硼烷(TSOB),采用红外光谱法对分子结构进行了表征;用差示扫描量热法和红外光谱对树脂固化反应进行了研究,其固化反应主要为苯乙炔基之间的Diels-Alder反应,生成了芳香稠环结构,赋予固化物高的热稳定性;采用热失重法对固化物耐热性能进行研究,结果表明,氮气和空气中Td10(质量损失10%的温度)分别为502℃和554℃,900℃的质量保留率分别为71%和31%。  相似文献   

3.
以甲基氢二乙炔基硅烷、甲基氢二氯硅烷和二苯基二氯硅烷为主要原料,通过格氏试剂与二氯硅烷的缩合反应,合成了一种硅炔杂化耐高温树脂聚(甲基苯基-间乙炔基硅烷)(PMPS)。采用傅里叶变换红外光谱、核磁共振和凝胶渗透色谱对其结构进行了表征;利用傅里叶变换红外光谱和差示扫描量热技术分析了树脂的固化行为;采用热重分析考察了树脂固化产物的热稳定性能。结果表明,PMPS树脂的数均相对分子质量为1140,相对分子质量分布系数为1.34,常温下黏度适中,具有良好的加工性能。树脂通过硅氢加成反应和Diels-Alder反应形成交联网络结构,固化产物具有良好的热稳定性,在空气和氮气气氛中失重5%时的温度(Td5)高于550℃,1000℃的质量保留率大于65%。  相似文献   

4.
以甲基氢二乙炔基硅烷、甲基氢二氯硅烷和二苯基二氯硅烷为主要原料,通过格氏试剂与二氯硅烷的缩合反应,合成了一种硅炔杂化耐高温树脂聚(甲基苯基-间乙炔基硅烷)(PMPS)。采用傅里叶变换红外光谱、核磁共振和凝胶渗透色谱对其结构进行了表征;利用傅里叶变换红外光谱和差示扫描量热技术分析了树脂的固化行为;采用热重分析考察了树脂固化产物的热稳定性能。结果表明,PMPS树脂的数均相对分子质量为1140,相对分子质量分布系数为1.34,常温下黏度适中,具有良好的加工性能。树脂通过硅氢加成反应和Diels-Alder反应形成交联网络结构,固化产物具有良好的热稳定性,在空气和氮气气氛中失重5%时的温度(Td5)高于550℃,1000℃的质量保留率大于65%。  相似文献   

5.
以间二乙炔基苯、甲基氢二氯硅烷和苯基三氯硅烷为原料,利用格氏试剂法合成出一种耐高温硅炔树脂聚(间二乙炔基苯-甲基氢硅烷-苯基硅烷)(PDMP)。采用红外光谱分析、核磁共振谱图分析表征树脂的结构、凝胶渗透色谱测量树脂的分子量分布,利用差示扫描量热分析、旋转流变仪研究树脂的固化行为、热重分析表征聚合物的耐热性能。结果表明:随着苯基三氯硅烷与甲基氢二氯硅烷摩尔比的增加,树脂的耐热性先增高后降低。苯基三氯硅烷与甲基氢二氯硅烷摩尔比为4∶7时,合成的PDMP树脂耐热性最佳,氮气氛围中失重5%时的温度(Td5)达654℃,1000℃质量残留率为90.3%,空气氛围中的Td5达574℃,1000℃质量残留率为34.0%。  相似文献   

6.
以二乙炔基苯(DEB)和甲基三氯硅烷(MTS)为原料,锌粉作催化剂,合成了一种支链型硅烯炔树脂(Branched Silicon-containing Arylethyleneacetylene Resin,BSA)。研究表明,最优反应条件为:物料摩尔配比二乙炔基苯比甲基三氯硅烷为9∶4,80℃温度下回流反应10h,合成树脂的产率达82.4%。树脂在130℃下就可发生固化交联反应,粘度较低,具有良好的加工性能;BSA树脂固化物具有良好的热稳定性,N2氛围下质量分解5%时的温度Td5达到567℃,800℃时质量残留率约为90%。  相似文献   

7.
以二乙炔基苯、双(二甲氨基)二甲基硅烷为原料,乙腈为溶剂,通过氯化锌催化实现单步硅烷化合成含硅芳炔树脂。研究结果表明,乙腈做溶剂,二乙炔基苯与双(二甲氨基)二甲基硅烷投料比为9∶8(摩尔比),ZnCl_2相对于炔过量0.65倍,回流反应11h效果最佳,收率高达90%以上;制备的含硅芳炔树脂在室温下呈流动状态,加工性能良好,加工温度为40~180℃,加工窗口为140℃;固化后的含硅芳炔树脂,在N_2气氛下热分解5%时的温度(T_(d5))为587℃。  相似文献   

8.
含硅芳炔树脂(PSAs)因其突出的耐热性能,在诸多领域具有应用价值。为满足高速发展的航空航天、电子信息技术的应用需求,耐高温树脂材料性能亟待提升。本研究以1,3-二乙炔基苯和苯基二氯硅烷为原料,通过格氏试剂法合成线型聚(苯基硅烷-芳炔)树脂(PPSA),对其交联固化形成耐高温结构的机理进行研究。采用差示扫描量热仪(DSC)与热重分析(TGA)对其热固化行为和热稳定性进行表征,采用傅里叶变换红外光谱仪(FTIR)和裂解气质联用(Py-GC-MS)对PPSA树脂耐高温结构的形成机理进行研究。实验证明,PPSA树脂在热固化过程中通过环三聚反应、Diels-Alder反应和硅氢加成反应生成苯环、萘环和菲环等类芳环结构,赋予了PPSA固化物优异的耐高温性能,其热分解温度(Td5)为742-755℃,1000℃热解残留率大于92%。因此,PPSA对拓宽含硅芳炔的应用具有重要意义。  相似文献   

9.
合成带乙炔基聚硼硅氮烷(PBSZ),并与含硅芳炔树脂(PSA)进行杂化制备聚硼硅氮烷杂化芳炔基(PBSZ/PSA)树脂,以改善芳炔基树脂的抗热氧化性能。采用FTIR、NMR和凝胶渗透色谱(GPC)对合成的PBSZ进行结构表征;采用旋转流变和DSC对PBSZ/PSA树脂的工艺性能进行研究;采用TGA、SEM和EDS对PBSZ/PSA树脂固化物的热稳定性和抗热氧化性能进行了研究。结果表明:PBSZ/PSA树脂具有良好的加工性能,树脂固化放热量较低,可在210℃下固化;树脂固化物在空气气氛1000℃下的残留率为38.0%,且其氧化后表面形成了60~80 μm厚致密的保护层,可起到良好的隔绝氧气作用;改性树脂固化物1200℃烧结物展现出优异的抗热氧化性能,烧结物1200℃氧化后表面形成约10 μm厚的致密陶瓷保护层,可有效地阻止氧气对材料的侵蚀。   相似文献   

10.
以1,2-二(4-羟基苯基)-碳硼烷和甲基乙烯基二氯硅烷为单体,在三乙胺为缚酸剂的条件下进行缩聚反应,得到聚乙烯基甲基硅氧烷-碳硼烷V-PMSCB。采用红外、核磁和GPC对V-PMSCB结构和相对分子质量进行表征,结果表明聚合物结构与设计结构完全一致,且其数均分子量为5.8×10~4。利用红外、差示扫描量热分析和热重分析(TGA)研究了该树脂与含氢硅油的固化工艺,得知其固化工艺为60℃/3 h, 115℃/2 h, 140℃/1 h。通过对该固化产物PMSCB进行TGA分析,可知其具有优异的热稳定性和热氧稳定性,其在空气中5%热失重温度高于1000℃,1000℃时的残碳率高达99.07%。  相似文献   

11.
采用双酚A型邻苯二甲腈预聚树脂(BAPh-P)改性聚(间二乙炔基苯-二甲基硅烷)树脂(PDMP)制备了双酚A型邻苯二甲腈/聚(间二乙炔基苯-二甲基硅烷)树脂(PBA),利用DSC、FTIR、流变分析、TGA等技术分析其固化行为、黏度以及耐热性变化。结果表明,PBA树脂固化峰值温度较PDMP升高;固化反应主要为炔基的Diels-Alder和加成反应、氰基进一步交联生成三嗪环和酞菁环等结构反应;BAPh-P的加入提升了PDMP在空气下的耐热性,PBA-1(PDMP:BAPh-P质量比为5∶1)树脂固化物在N2和空气氛围质量损失5%的温度(Td5)分别为640.6℃和591℃,1000℃质量保留率为89.0%和26.9%;随着BAPh-P质量增加,PBA树脂固化物Td5呈下降趋势,但空气中Td5均高于PDMP;石英纤维增强PBA树脂基(QF/PBA)复合材料随BAPh-P质量增加室温弯曲强度逐渐升高,高温弯曲强度先升高后降低;其中QF/PBA-2复合材料室温和400℃弯曲强度分别为363 MPa和330 MPa,较PDMP分别提升91%和214%,室温和400℃的层间剪切强度(ILSS)分别为37.5 MPa和22.2 MPa。   相似文献   

12.
采用格氏试剂法和氨解法,合成了一种新型耐高温聚(甲基氢-间二乙炔基苯硅烷)树脂(PMNS),利用FT-IR和DSC研究了树脂的固化行为,通过TGA考察了树脂固化物的耐热性能,并对复合材料的力学性能、断面形貌和耐水性能进行了研究。结果表明,PMNS树脂溶于大多数有机溶剂中,可在低温条件下固化,PMNS树脂固化物在氮气氛围下Td5(质量损失5%的温度)达到670℃,1 000℃的质量保留率为90.7%;常温下复合材料的弯曲强度达到412 MPa,玻璃化转变温度高于400℃,具有优异的热稳定性能和耐水性能。  相似文献   

13.
采用间氨基苯乙炔和溴丙炔反应合成了N,N-二炔丙基-3-乙炔基苯胺(DPEA),通过红外光谱、核磁共振、元素分析对其结构进行了表征。再以DPEA和多官能团叠氮单体为原料制备了新型聚三唑(PTA-23、PTA-33)树脂,表征了树脂的溶解性、固化行为、热性能和力学性能。结果表明,PTA-23和PTA-33树脂能够溶于多种常用有机溶剂,在80℃以下就能固化;固化后的PTA-33树脂的玻璃化转变温度(Tg)和热分解温度(Td5)分别为329℃和367℃,其弯曲强度和拉伸强度分别达到158 MPa和93 MPa。  相似文献   

14.
以1,2-二(4-羟基苯基)碳癸硼烷(CBR-328)为原料,合成了1,2-二(4-炔丙氧基苯基)碳癸硼烷(CBR-404),红外光谱和核磁共振(1H-NMR,13C-NMR,11B-NMR)表征其结构。在热作用下,CBR-404发生自身固化,利用红外光谱和差示扫描量热分析研究了固化动力学。结果表明,该树脂体系表观活化能为120.17 k J/mol,固化反应级数n=0.93;固化起始反应温度Tonset=228.76℃,峰值固化温度Tcure=267.90℃,后处理温度Ttreat=292.46℃等固化工艺参数;固化后树脂具有良好的热氧稳定性,氩气和空气氛围中,5%失重温度分别是442.8℃和583.2℃,900℃的残留率分别为86.6%和91.6%。  相似文献   

15.
在无水三氟甲磺酸锌催化下通过2,6-双-(4-乙炔基苯氧基)-苯腈和二甲基二氯硅烷室温反应制备了侧氰基芳醚硅芳炔树脂(CNSA);采用1H-NMR、FTIR、DSC、TGA等分析测试技术表征了CNSA的结构与性能。结果显示,CNSA树脂具有好的溶解性和宽的加工窗口,可在较低温度(<200℃)下发生固化反应;树脂固化物具有好的热性能,在50~400℃之间无玻璃化转变,在N2中质量损失5%的温度Td5达512℃;T300碳纤维平纹布/CNSA(CF/CNSA)复合材料的室温弯曲强度达383.8 MPa,弯曲模量为62.9 GPa。   相似文献   

16.
碳硼烷改性有机硅树脂是一种耐热性能优异的高分子材料,具有广阔的应用前景。然而由于聚合单体碳硼烷改性硅氧烷的合成条件苛刻,严重影响碳硼烷改性有机硅树脂的制备和应用。本研究利用羟基与异氰酸酯基间的加成反应,在温和的条件下合成了一种新型结构的碳硼烷改性硅氧烷-碳硼烷改性氨酯桥接丙基三乙氧基硅烷(CBR-Si),在此基础上经水解缩聚反应合成了碳硼烷改性有机硅树脂(CBR-PSQ)。研究结果表明,在二月桂酸二丁基锡的催化作用下,摩尔比为1∶2的1,2-二羟甲基取代碳硼烷(CBR-OH)与异氰酸丙基三乙氧基硅烷(NCO-Si)在60℃下反应12h,可得到CBR-Si。所得有机硅树脂CBR-PSQ具有优异的热稳定性和热氧化稳定性,热分解温度高达500℃,在N2和空气氛围中800℃的残炭率约为80%。该研究为耐高温碳硼烷改性有机硅树脂的合成和制备提供了一条新途径。  相似文献   

17.
采用间氨基苯乙炔和溴丙炔反应合成了N,N-二炔丙基-3-乙炔基苯胺(DPEA),通过红外光谱、核磁共振、元素分析对其结构进行了表征。再以DPEA和多官能团叠氮单体为原料制备了新型聚三唑(PTA-23、PTA-33)树脂,表征了树脂的溶解性、固化行为、热性能和力学性能。结果表明,PTA-23和PTA-33树脂能够溶于多种常用有机溶剂,在80℃以下就能固化;固化后的PTA-33树脂的玻璃化转变温度(Tg)和热分解温度(Td5)分别为329℃和367℃,其弯曲强度和拉伸强度分别达到158 MPa和93 MPa。  相似文献   

18.
为研究聚乙烯基三苯乙炔基硅烷树脂的热性能,以苯乙炔和乙烯基三氯硅烷为原料,运用格利雅反应合成了乙烯基三苯乙炔基硅烷单体,并通过红外(FT-IR)、核磁(1H-NMR,13C-NMR,29Si-NMR)证实了合成产物.以此单体为原料,通过热聚合法制备了聚乙烯基三苯乙炔基硅烷树脂,并采用TGA-DTG研究该聚合物的热分解动力学,计算了相应动力学参数.结果表明:该树脂的热分解温度(Td5%)在550℃左右,800℃时聚合物的残炭率约80%;用Kissinger法和Ozawa法求得的聚合物热分解活化能分别为266.55和236.89 k J/mol;用Crane法求得聚合物的热分解反应级数为0.93,近似为一级反应.  相似文献   

19.
以甲基氢二氯硅烷、甲基乙烯基二氯硅烷为原料,采用氨解反应以及热聚合反应合成了一系列乙烯基氢基甲基聚硅氮烷(PSZ135-170),其数均分子量(Mn)在2.9×103~1.9×105之间,单位浓度聚合物的粘度(ηred)在0.06~0.49mL/g之间。通过FTIR和1H NMR对聚硅氮烷结构进行了表征,该系列聚硅氮烷具有无定型结构,可溶解于正己烷、甲苯、乙酸乙酯、二氯甲烷和N,N-二甲基甲酰胺等常用有机溶剂中,通过TGA分析了该系列聚硅氮烷的热性能,发现随着聚硅氮烷分子量的增加,在N2中25~700℃热解后剩余物的百分含量逐渐升高,最高可达72.58%。  相似文献   

20.
合成了1,2-二(4-异氰酸酯基苯基)碳癸硼烷(BCE),用红外光谱和核磁共振(1H-NMR和13C-NMR)表征其结构。研究了BCE氰酸酯树脂的固化特征温度、流变性能和热稳定性能,并考察了其石英纤维增强复合材料的耐热性能和介电性能。结果表明,BCE氰酸酯树脂适合于模压和热压罐等复合材料成型工艺。固化后的树脂玻璃化转变温度不低于500℃,在氮气和空气中5%失重温度分别为491.9℃和465.9℃,800℃残留率分别为91.9%和90.3%。在7~19 GHz频率下,石英纤维增强BCE树脂复合材料具有较低且稳定的介电常数和介电损耗正切值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号