首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将海泡石添加到聚磷酸铵(APP)/双季戊四醇(DPER)膨胀阻燃聚丙烯(PP/IFR)体系中,采用氧指数、热重分析及X射线光电子能谱法研究了体系的阻燃性能及作用机理。结果表明,添加海泡石后氧指数达到26.1%,协同指数达到1.1;海泡石可以提高膨胀炭层的热稳定性,增加高温时残炭量;海泡石与APP发生化学反应,形成Si-O-P键,可增加APP高温分解时的稳定性;同时,海泡石具有表面迁移现象,海泡石及热解的含硅类氧化物起到了阻隔的作用。  相似文献   

2.
针对聚磷酸铵(APP)有一定的水溶解性和阻燃效率不高等问题, 提出了采用氢氧化铝(ATH)包覆改性APP的方法。X射线荧光光谱(XRF)和扫描电镜(SEM)分析结果显示, 在APP颗粒表面实现了ATH的包覆改性。测试表明, ATH包覆改性后的APP溶解度明显下降, 比表面大幅增加。将改性后的APP与双季戊四醇(DPER)复配, 作为膨胀阻燃剂添加到PP中, 阻燃PP的燃烧性能测试结果表明: 阻燃剂总添加量为25%时, 包覆ATH的APP使阻燃PP 3.2 mm样条的垂直燃烧级别从V-1提高到V-0, 氧指数(LOI)从26.6%增加到31.8%, 热释放速率峰值(PHRR)从475 kW/m2下降至308 kW/m2, 下降了约35%。对阻燃PP的燃烧残炭研究说明, APP经ATH包覆改性后, 促进了阻燃PP在燃烧时形成更加完整均匀的炭层, 因而改善了阻燃性能。  相似文献   

3.
氧化铋在膨胀阻燃聚丙烯体系中的催化协效作用   总被引:3,自引:0,他引:3  
将聚磷酸铵(APP)和双季戊四醇(DPER)膨胀型阻燃剂应用于聚丙烯(PP)的阻燃,并加入少量氧化铋(Bi2O3)。采用极限氧指数、烟密度和热分析等表征其阻燃性能。结果表明,加入少量的Bi2O3(0.1%质量分数,下同),可以提高体系的氧指数,降低体系的烟密度。热失重分析表明,Bi2O3加入可以使APP生成更多的固相残留物,催化膨胀阻燃剂交联成炭,高温时残炭增加,阻燃体系的最大热失重速率对应温度后移。同时热老化实验表明,Bi2O3的加入没有加快体系热老化的现象。  相似文献   

4.
为了提高玻璃纤维(GF)增强聚丙烯(PP)复合材料(GF/PP)的阻燃性能,通过在蒙脱土(MMT)悬浮液中进行三聚氰胺氰尿酸盐(MCA)分子自组装制备了新型协效成炭剂MCA-MMT,并采用FTIR、XRD、SEM和TGA对MCA-MMT的结构及热性能进行了表征;将MCA-MMT、无卤膨胀型阻燃剂与GF/PP熔融共混制备了阻燃复合材料MCA-MMT/(GF/PP),通过极限氧指数(LOI)测试、垂直燃烧试验和锥形量热测试研究了MCAMMT对GF/PP的阻燃效果和阻燃机制,并测试了复合材料的力学性能。结果表明:MMT的加入会影响氰尿酸和三聚氰胺在MCA合成过程中的氢键作用,干扰和抑制大平面氢键网络的形成,减少MCA氢键复合体的分子体积,使颗粒变小。MCA-MMT/(GF/PP)的UL-94防火等级达到V-0级,LOI为31.3%。MCA-MMT的阻燃效率高于传统MCA的,可降低材料燃烧的热释放程度和总烟释放量,使复合材料的阻燃性能提高,其阻燃机制为片层结构的MMT可提高MCA的成炭量,使MCA-MMT/(GF/PP)燃烧后能形成致密的残留炭层。MCA-MMT/(GF/PP)的拉伸、冲击强度与MCA/(GF/PP)的相比并未下降。  相似文献   

5.
以聚磷酸铵(APP)、三嗪系成炭发泡剂(CFA)作为石蜡/聚丙烯定形相变材料(PCM)的膨胀阻燃剂。采用热重分析仪(TGA)分析阻燃石蜡/聚丙烯定形相变材料的热解特性,揭示了此体系的热稳定性,并以差示扫描量热仪(DSC)研究阻燃PCM的相变储能性能。结果表明:随着膨胀阻燃剂(CFA和APP)的添加,PCMs起始分解温度降低,残炭量由0.4%增加到17.1%,有效的提高了材料的阻燃性能和热稳定性。膨胀阻燃剂基本不影响相变材料的储能性能,但与聚丙烯(PP)的含量有关,PP含量越高,储能量越低,相变温度越滞后。  相似文献   

6.
以三氧化二镍(Ni2O3)为阻燃协效剂,采用聚磷酸铵(APP)和双季戊四醇(DPER)复配阻燃剂,制备了具有良好阻燃性能的膨胀阻燃聚丙烯。氧指数(LOI)、垂直燃烧测试(UL-94)表明,添加1%(质量分数,下同)Ni2O3,膨胀阻燃体系LOI达到28.2%,UL-94测试通过V-0级;热失重(TGA)、X射线光电子能谱(XPS)及X射线衍射分析(XRD)表明,Ni2O3使聚磷酸铵热失重速率明显降低,高温残余量显著提高;高温时,Ni2O3分解为NiO,与APP分解产生的多聚磷酸发生化学反应,形成稳定的偏磷酸镍盐,提高了多聚磷酸的热稳定性。研究表明,NiO阻止多聚磷酸分解产生P2O5的过程,使更多的多聚磷酸参与酯化反应,促进体系燃烧成炭,从而形成更加致密的膨胀炭层,提高了材料的阻燃性能。  相似文献   

7.
三氧化二镍协同膨胀阻燃聚丙烯的热降解机理   总被引:1,自引:0,他引:1  
以三氧化二镍(Ni2O3)为阻燃协效剂,采用聚磷酸铵(APP)和双季戊四醇(DPER)复配阻燃剂,制备了具有良好阻燃性能的膨胀阻燃聚丙烯。氧指数(LOI)、垂直燃烧测试(UL-94)表明,添加1%(质量分数,下同)Ni2O3,膨胀阻燃体系LOI达到28.2%,UL-94测试通过V-0级;热失重(TGA)、X射线光电子能谱(XPS)及X射线衍射分析(XRD)表明,Ni2O3使聚磷酸铵热失重速率明显降低,高温残余量显著提高;高温时,Ni2O3分解为NiO,与APP分解产生的多聚磷酸发生化学反应,形成稳定的偏磷酸镍盐,提高了多聚磷酸的热稳定性。研究表明,NiO阻止多聚磷酸分解产生P2O5的过程,使更多的多聚磷酸参与酯化反应,促进体系燃烧成炭,从而形成更加致密的膨胀炭层,提高了材料的阻燃性能。  相似文献   

8.
采用聚磷酸铵(APP)为阻燃剂,通过熔融共混,制备阻燃水稻秸秆与阻燃稻壳粉聚丙烯复合材料。通过力学性能、极限氧指数、垂直燃烧、热重分析(TGA)和扫描电镜(SEM)等表征手段研究了材料的力学、阻燃及热降解行为。结果表明:APP与秸秆粉的阻燃效果好于稻壳粉,当添加18%APP时,聚丙烯/秸秆粉复合材料可达到V-0级,氧指数提高了17.5%。对于聚丙烯/稻壳粉体系,APP添加20%时才达到V-0级。TGA与SEM研究表明:APP的添加使复合材料在燃烧过程中形成膨胀的致密炭层是阻燃的主要原因。  相似文献   

9.
采用聚磷酸铵(APP)与纳米SiO_2阻燃水稻秸秆/高密度聚乙烯(HDPE)木塑复合材料,通过力学性能、极限氧指数、垂直燃烧、热重分析(TGA)和扫描电镜等研究了复合材料的界面,力学,阻燃性能及热降解行为。研究结果表明,当添加17%(wt,质量分数,下同)的APP与3%的纳米SiO_2时达到V-0级,极限氧指数提高了30.8%。拉伸强度提高了42.8%,弯曲强度提高51.9%,冲击强度提高了73.9%。TGA与SEM研究表明,APP与纳米SiO_2对木塑复合材料具有阻燃协效效应,APP使秸秆粉碳化同时膨胀发泡,纳米SiO_2加固炭层是阻燃的主要原因。  相似文献   

10.
采用改性炭黑(M-CB)、膨胀石墨(EG)、聚磷酸铵(APP)三者复合与木粉及聚丙烯(PP)制备阻燃抗静电木塑复合材料。通过ZC-36型高阻计、JF-3型氧指数测定仪、CZF-3水平垂直燃烧测定仪、锥形量热仪、热重分析(TGA)测定复合材料的表面电阻率、氧指数及燃烧性能、阻燃性能、热失重行为。研究结果表明M-CB有良好的导电性能,可以使材料表面电阻率由约1014Ω降低到约108Ω;锥形量热及氧指数结果等表明M-CB/EG/APP三者复合阻燃体系的阻燃性能优于单一组分,同时TGA结果表明样品材料热稳定性能高于单一阻燃体系,残炭量显著提高,可以保护PP,使PP分解温度上升。  相似文献   

11.
采用热失重、极限氧指数、锥形量热研究了以受阻胺(NOR116)和分子筛为协效剂,与聚磷酸铵(APP)/季戊四醇(PER)在聚丙烯基体中的热降解行为及协同阻燃性;并用拉曼光谱和扫描电镜分析了残炭的结构和形貌,进一步研究了其协同阻燃机理。结果表明,NOR116/分子筛协效阻燃体系可明显提高极限氧指数并改善燃烧时熔滴缺陷,显著降低热释放速率、烟释放速率;NOR116可有效提高PP的初始分解温度及最大分解速率温度,使膨胀阻燃体系后期的交联成炭及气体释放更加匹配;在燃烧过程中分子筛与膨胀阻燃体系形成了Si-P-Al-C的结构,可有效稳定炭层;拉曼光谱及扫描电镜结果表明,NOR116和分子筛可促进膨胀阻燃体系形成致密且高石墨化程度的炭层,有效阻隔了氧气的进入及热的反馈。  相似文献   

12.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、磷腈为基础单元合成阻燃剂六(4-DOPO羟甲基苯氧基)环三磷(DOPOMPC),将其与聚磷酸铵(APP)复配添加至环氧树脂(EP)制备出阻燃复合材料(DOPOMPC/APP/EP)。为进一步提高阻燃环氧树脂的阻燃及力学性能,添加不同质量分数的蒙脱土(MMT)制出新型阻燃环氧树脂材料(DOPOMPC/APP/MMT/EP)。通过极限氧指数(LOI)、水平燃烧、锥形量热、扫描电子显微镜观察等方法研究了蒙脱土与DOPOMPC的协同效应。实验结果表明,EP4(10%DOPOMPC/10%APP/3%MMT/77%EP)各项燃烧参数得到了最佳改善,复合材料综合表现最优。其中LOI值达到38.2%;热释放速率峰值较未经MMT处理的阻燃复合材料EP1(10%DOPOMPC/10%APP/EP)下降了29.1%;比消光面积平均值和一氧化碳释放率平均值分别降低了72.7%和65.5%;火势增长指数、发烟指数和毒性气体生成速率指数较EP1降幅分别达到38.2%、13.1%和34.0%;拉伸强度、弯曲强度和冲击强度比EP1分别提高了25.4%、12.7%和1.97倍,呈现出良好的阻燃、抑烟、抑毒性能。炭层宏观和微观形貌表明,添加MMT的阻燃材料在燃烧初期能够形成更致密、坚硬的优质炭层。  相似文献   

13.
一种膨胀阻燃PP体系及其燃烧性能   总被引:1,自引:0,他引:1  
制备了一种阻燃聚丙烯/膨胀阻燃剂(IFR)/蒙脱土(MMT)膨胀阻燃体系,研究了不同阻燃组分含量对体系阻燃性能的影响。结果表明,阻燃剂总添加量为30%,其中的成炭剂和聚磷酸铵(APP)的配比为1∶2时,体系的极限氧指数为29%,垂直燃烧试验(UL-94)达到V-2级;而在上述体系中添加0.5%的MMT时,体系的LOI提高到31%,垂直燃烧试验(UL-94)通过V-0级,表现出较好的协同阻燃效果。采用扫描电境(SEM)和红外光谱(FT-IR)对体系的固相残炭进行了观察和分析,探讨了可能的阻燃机理。  相似文献   

14.
分子筛对聚丙烯膨胀型阻燃体系热降解行为的研究   总被引:15,自引:0,他引:15  
研究了分析筛(Zeolite 4A、13X、Mordenite、ZSM-5)在聚磷酸铵/季戊四醇(APP/PER)膨胀阻燃剂中的热降解行为。TG研究表明,APP/PER体系加入分子筛后,体系的热失重速率峰值降低,热失重速率峰发生了位移。将APP/PER-Zeolite作用于PP形成的膨胀阻燃体系,PP参与了成炭,500℃后残炭量显著增加,高于550℃时残炭稳定。实验证实了在高温下,分子筛可作为膨胀阻燃体系的催化剂,能促进体系交联和成炭,可使体系的阻燃行为得到改善,其中4A分子筛对PP的协同作用最大,LOI达37%,比纯PP提高了9个单位。  相似文献   

15.
以聚磷酸铵(APP)、季戊四醇(PER)组成的膨胀阻燃剂(IFR)为主阻燃剂,有机蒙脱土(OMMT)为协效阻燃剂,马来酸酐接枝聚烯烃弹性体(POE-g-MAH)为增韧剂,以聚酰胺6(PA6)为聚合物成炭剂,采用熔融共混法制备了PP/PA6/POE-g-MAH/IFR/OMMT阻燃复合材料,并研究了PA6对PP阻燃复合材料阻燃性和力学性能的影响。通过极限氧指数(LOI)、垂直燃烧、热重分析、扫描电子显微镜和力学性能测试等手段对PP阻燃复合材料进行了测试与表征。结果表明:成炭剂PA6的加入,可显著地提高PP阻燃复合材料的阻燃性能,当PA6含量为5%时,PP阻燃复合材料的LOI由原来不含PA6时的25.5%提高到了30.0%,垂直燃烧等级由原来的无等级提高到了UL-94 V-0级,且随着PA6含量的进一步增加,LOI在逐渐增大。但PA6的加入,会使PP阻燃复合材料的力学性能下降。  相似文献   

16.
用DOPO(9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物)对介孔分子筛MCM-41进行表面改性,将改性后的MCM-41作为阻燃协效剂与聚磷酸铵(APP)、季戊四醇(PER)及三聚氰胺(MEL)复配阻燃剂,研究了添加改性MCM-41对PP阻燃性能、力学性能和热性能的影响。结果表明,添加少量DOPO改性分子筛即可显著提高PP的阻燃性能,当改性分子筛的添加量为1%时阻燃PP的氧指数为32.6,比纯PP的提高91.76%;热重分析、动态热机械能分析和扫描电镜分析的结果表明,添加少量的改性分子筛MCM-41可催化APP/PER/MEL间的酯化反应,促进体系成炭,形成更紧密的炭层,从而提高材料的阻燃性能。  相似文献   

17.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成膨胀阻燃体系(IFR),同时为提高抑烟性能将一定量蒙脱土(MMT)引入阻燃体系中。将此体系应用到环氧树脂(EP)的阻燃改性中,以间苯二胺(m-PDA)为固化剂制得阻燃改性EP材料。通过极限氧指数(LOI)、垂直燃烧(UL-94)、热重(TG/DTG)、锥形量热(CONE)和扫描电镜(SEM)分别探究了材料的阻燃性能、热降解行为、燃烧行为以及微观形貌。结果表明:5%IFR+1%MMT(wt,质量分数,下同)的阻燃剂可使EP达到UL 94V-0级;10%IFR+1%MMT可将极限氧指数提高到29.2%;同时,改性EP的燃烧性能得到很大提高,平均热释放速率(AvHRR)下降了52.0%,热释放速率峰值(PkHRR)下降了33.2%,总烟产生量(TSP)下降了70.0%;炭层形态研究显示,改性后的EP燃烧后能形成致密、封闭的炭层,能有效阻碍热量释放与烟雾扩散。  相似文献   

18.
利用三聚氰胺聚磷酸盐(MPP)和笼状季戊四醇磷酸酯(PEPA)的阻燃协效作用,复配成膨胀型阻燃剂(IFR)对聚丙烯(PP)/稻壳(RH)复合材料进行阻燃。研究了MPP与PEPA复配比例对PP/RH复合材料阻燃性能的影响。采用垂直燃烧(UL-94)和极限氧指数(LOI)研究了阻燃PP/RH复合材料的阻燃性能,采用热重分析研究阻燃PP/RH复合材料的热分解过程,采用扫描电镜(SEM)观察阻燃PP/RH复合材料燃烧后炭层的形貌。结果表明:当MPP/PEPA总用量为20%(wt%,质量分数),PEPA和MPP的质量分数比为1∶4时,阻燃PP/RH复合材料的LOI值为29.7%,垂直燃烧UL-94通过V-0级,PP/RH复合材料的拉伸强度和弯曲强度分别增加了42.3%和53.6%。热重结果表明:MPP/PEPA复配能够延缓PP/RH体系中PP的分解,并提高了材料的成炭性,使PP/RH复合材料800℃下的残炭率由16.3%提高到了30.3%,残炭率升高了14.0%。通过SEM观察得到:两者复配使PP/RH复合材料燃烧后形成了致密均匀的多孔炭层,从而提高了PP/RH复合材料的阻燃性能。  相似文献   

19.
制备了环氧树脂(EP)/聚磷酸铵(APP)/可膨胀石墨(EG)阻燃材料。采用极限氧指数(LOI)、垂直燃烧(UL-94)、热重分析(TGA)及扫描电镜(SEM)研究了EG及其粒径对材料阻燃性能和燃烧成炭效果的影响。结果表明,EG具有一定的协同阻燃效果;EP/APP/EG复合材料燃烧过程均无溶滴现象;EG可提高EP/APP高温残留量,并能有效提高燃烧炭层膨胀体积;与50 mesh EG相比,100 mesh EG具有更好的协同阻燃以及协同成炭效果。  相似文献   

20.
以正硅酸四乙酯(TEOS)和乙烯基三乙氧基硅烷(A-151)对聚磷酸铵(APP)和三聚氰胺尿酸盐(MCA)进行改性,制备了Si-MAPP和Si-MMCA,解决了APP和MCA疏水性差的问题。将Si-MAPP和Si-MMCA与双季戊四醇(DPER)复配得到一种新的膨胀型阻燃剂(IFR)并用于LDPE阻燃。利用红外光谱、扫描电子显微镜和热重分析证明了APP和MCA成功被TEOS和A-151涂层修饰。采用万能材料试验机、极限氧指数仪、UL-94垂直燃烧试验和锥形量热试验测试了LDPE复合材料的阻燃性能。研究结果表明,经TEOS和A-151涂层修饰后,Si-MAPP和Si-MMCA疏水性能优异,与LDPE相容性好。加入含Si-MAPP/DPER/Si-MMCA的IFR大幅提高了LDPE复合材料的阻燃性。当加入质量分数43.75%的Si-MAPP/DPER/Si-MMCA后,复合材料极限氧指数为30.3%并达到V-0级别,拉伸强度达12.92MPa,比同比例无Si-MMCA的LDPE/IFR高出了3.79%,比质量分数为41.6%无Si-MAPP的LDPE/IFR高出了6.81%。烟密度试验表明...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号