首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用基于密度泛函理论的第一性原理赝势平面波方法,计算Ti掺杂Mg2Ni储氢合金及其氢化物的能量和电子结构。计算结果表明:在掺杂浓度为0≤x≤0.5的情况下,Ti优先占据Mg(II)位,Ti的掺杂使Mg2Ni合金稳定性降低,且随着掺杂浓度的升高,对稳定性的削弱效果逐渐增强。六方结构的固溶体合金Mg(2-x)TixNi(0≤x≤0.5)相对于立方结构的Mg3TiNi2化合物呈现热力学不稳定性,极易分解为Mg3TiNi2和Mg2Ni组成的复合相。Ti的掺杂使低能级区域的成键电子数减少,削弱了H-Ni的成键作用,提高了Mg2Ni氢化物的解氢能力。  相似文献   

2.
采用SEM与XRD分析了Mg_(2.1)Ni与Mg_(1.6)La_(0.5)Ni合金的显微组织与相结构,用Sievert法测试了合金的活化性能以及吸放氢动力学。结果表明:Mg_(2.1)Ni合金的室温组织为脊椎状的Mg_2Ni相和层片状Mg_2Ni/Mg共晶组织,而Mg_(1.6)La_(0.5)Ni合金组织为块状La2Mg17相、长条状LaMg_3相镶嵌于Mg_2Ni基体相中;合金的吸氢活化性能与成分有关,Mg_(2.1)Ni合金的活化性能相对较差,而Mg_(1.6)La_(0.5)Ni合金的活化性能优异;合金的吸放氢动力学与La加入有关,Mg_(1.6)La_(0.5)Ni合金的吸放氢动力学优于Mg_(2.1)Ni合金,这归因于La加入使合金组织疏松、较多的晶界/相界、以及具有催化效应的La_4H_(12.19)相出现,但La_4H_(12.19)相具有较高的热稳定性,这降低合金氢化物的放氢率。  相似文献   

3.
采用第一性原理赝势平面波方法,研究元素Al和Ti掺杂对Mg2Ni储氢合金相结构稳定性的影响及其微观机理.结果显示:在掺杂浓度x=0~0.5范围内,所形成的Mg2Ni型Mg2-xMxNi(M=Al,Ti)固溶体合金的相结构稳定性随Al掺杂浓度的增大而增强,随Ti掺杂浓度的增大而减弱,且Mg2-xMxNi(M=Al,Ti)固溶体合金相对于立方结构的Mg3MNi2(M=Al,Ti)化合物呈现热力学不稳定性,极易分解成由立方结构Mg3MNi2(M=Al,Ti)和六方结构Mg2Ni组成的复合相,计算结果与实验结果吻合.电子结构分析表明,Al、Ti掺杂Mg2Ni储氢合金的相结构稳定性与体系在低能级区的成键电子数密切相关.  相似文献   

4.
采用冶金法制备了Mg_2Ni_(0.9)Co_(0.1)储氢合金,通过XRD和SEM/EDS研究了合金的相组成和显微组织,利用PCT和DSC研究了合金的吸放氢性能。结果表明,铸态合金由包晶Mg_2Ni相、Mg-Mg_2Ni共晶组织和少量的先析出Mg-Ni-Co三元相组成,元素Co能够固溶在Mg_2Ni相中形成Mg_2(Ni, Co)固溶体相。合金吸氢后转化为Mg_2NiH_4相、Mg_2Ni_(0.9)Co_(0.1)H_4相和MgH_2相。Co部分替代Mg_2Ni中的Ni,显著提高了合金的等温吸放氢动力学性能,Mg_2Ni_(0.9)Co_(0.1)氢化物的放氢温度明显降低,起始放氢温度约为200℃。  相似文献   

5.
研究了不同制备工艺下不同量的Ce和Ti添加剂对Mg_2Ni合金性能的影响。结果表明:不同的制备工艺导致了复合材料结构和颗粒尺寸的不同。制备得到的Mg_2Ni+20wt%(Ce H_3-TiH_2)复合材料在373 K温度下的吸氢量为1.5wt%,在573 K温度下的放氢量为2wt%。与复合物Mg_2Ni+20wt%Ce Mg_2Ni+10wt%TiH_2相比,Ce_(0.09)Mg_2Ni+10wt%TiH_2样品的氢扩散动力学性能有了显著改善。试验发现,Mg_2Ni+20wt%(Ce H_3-TiH_2)在吸放氢循环过程中有结构的转化。首先是Ti从复合添加剂中分离后,与Mg_2Ni相发生反应生成Mg_3Ti Ni_2相;而新生成的Mg_3Ti Ni_2相增加了各相之间的自由界面能,将Mg_2Ni+20wt%(Ce H_3-TiH_2)复合物的起始放氢温度降低到了383 K。  相似文献   

6.
采用固相烧结方法制备Mg_2Ni_(0.7)M_(0.3 )(M=Al, Mn, Ti)合金。利用X射线衍射仪、扫描电镜和扫描透射电镜对合金的相组成和显微组织进行系统表征。结果发现,Mg_2Ni_(0.7)M_(0.3)合金中形成了具有面心立方结构的金属间化合物Mg_3MNi_2,其与Mg和Mg_2Ni共存;且M原子半径与Mg原子半径越接近,越有利于Mg_3MNi_2的形成。采用Sievert和Tafel方法对Mg_2Ni_(0.7)M_(0.3)合金的储氢性能和耐腐蚀性能进行研究。Mg_2Ni_(0.7)M_(0.3)合金的吸/放氢性能得到明显改善。Mg_2Ni_(0.7)Al_(0.3)、Mg_2Ni_(0.7)Mn_(0.3)和Mg_2Ni_(0.7)Ti_(0.3)合金的脱氢反应的激活能较Mg_2Ni的激活能明显降低,分别为-46.12、-59.16和-73.15k J/mol。与Mg_2Ni合金相比,Mg_2Ni_(0.7)M_(0.3)合金的腐蚀电位向正方向移动,如Mg_2Ni_(0.7)Al_(0.3)合金(-0.529 V)与Mg_2Ni合金(-0.639 V)的腐蚀电位差为0.110 V,表明添加Al、Mn和Ti能使合金的耐腐蚀性能得到显著提高。  相似文献   

7.
制备了La_2Mg_(17)和La_2Mg_(16)Ni合金,研究了其贮氢性能。给出了这两种合金的解吸等温线,并据此计算了相应的△H,△S值。解吸等温线的分析表明:La_2Mg_(16)Ni的解吸等温线有分别对应于Mg_2Ni-Mg_2NiH_4以及Mg-MgH_2的两个平台。通过X射线衍射物相分析和电子探针分析,总组成为La_2Mg_(16)Ni的合金实际上是La_2Mg_(17)型和Mg_2Ni型两相混合物。La_2Mg_(16)Ni的氢化产物是La的氢化物以及MgH_2和Mg_2NiH_4。对两种合金还作了常温低压吸氢及常压加热吸氢等应用试验。从研究结果看来,La_2Mg_(17)和La_2Mg_(16)Ni合金是性能较好的贮氢材料。  相似文献   

8.
制备了La_2Mg_(17)和La_2Mg_(16)Ni合金,研究了其贮氢性能。给出了这两种合金的解吸等温线,并据此计算了相应的△H,△S值。解吸等温线的分析表明:La_2Mg_(16)Ni的解吸等温线有分别对应于Mg_2Ni-Mg_2NiH_4以及Mg-MgH_2的两个平台。通过X射线衍射物相分析和电子探针分析,总组成为La_2Mg_(16)Ni的合金实际上是La_2Mg_(17)型和Mg_2Ni型两相混合物。La_2Mg_(16)Ni的氢化产物是La的氢化物以及MgH_2和Mg_2NiH_4。对两种合金还作了常温低压吸氢及常压加热吸氢等应用试验。从研究结果看来,La_2Mg_(17)和La_2Mg_(16)Ni合金是性能较好的贮氢材料。  相似文献   

9.
研究了少量Al替代Mg(x=0.1)对La2Mg1-xAlxNi7.5Co1.5贮氢合金电化学循环稳定性的影响.经过充放电循环后,La2Mg1-xAlxNi7.5Co1.5(x=0.0,0.1)合金中的LaNi3相和αLa2Ni7相仍然保持PuNi3型结构和Ce2Ni7型结构,没有发生变化,此外,在这2种合金中出现少量新的物相La(OH)3,Mg(OH)2和Ni.LaNi3相和αLa2Ni7相吸氢形成氢化物后也保持PuNi3型结构和Ce2Ni7型结构.La2MgNi7.5Co1.5吸氢后,LaNi3相和αLa2Ni7相晶胞均呈各向异性膨胀,但LaNi3相的各向异性膨胀程度及晶胞体积膨胀率明显大于αLa2Ni7相.相比La2MgNi7.5Co1.5氢化物,Al替代Mg对La2Mg0.9Al0.1Ni7.5Co1.5氢化物中的αLa2Ni7相吸氢体积膨胀的抑制作用很小,但Al替代Mg使该氢化物中LaNi3相的c轴膨胀率和晶胞体积v的膨胀率均明显降低.电化学吸放氢循环后合金的粒径变化及形貌观察表明,La2Mg0.9A10.1Ni7.5Co1.5合金的抗粉化能力优于La2MgNi7.5Co1.5合金,这是Al替代Mg改善La2MgNi7.5Co1.5合金电极电化学循环稳定性的重要原因.  相似文献   

10.
《国外金属材料》2007,14(6):45-46
Ag掺杂的机械合金化Mg2Ni粉末吸氢性能的改进 贮氢合金可划分为AB型、AB2、A2B和AB5型四大类,在为数众多的合金之中以A2B型Mg2Ni金属间化物具有最高的吸氢能力(吸氢容量高达3.6%(质量)),作为贮氢材料是很有发展前途的。但是它的低吸氢/脱氢速度而限制了它的实际应用。机械合金化能够成功地制备金属氢化物,对原料进行机械研磨不仅能使其粒度减小并且能引入缺陷浓度和增加新鲜表面,从而改进吸氢性能。在机械合金化过程中添加Al、Ti、Zr等元素产生晶格应变也可改进合金的贮氢性能。  相似文献   

11.
通过球磨晶态Ti2Ni合金制备非晶态Ti2Ni合金,采用X射线衍射、充放电测试、阳极极化曲线对不同结构的Ti2Ni储氢合金的充放电特性及腐蚀行为进行研究。结果表明:晶态Ti2Ni合金的首次电化学充氢容量可达480mAh/g,但首次放氢量仅为充氢量的一半,合金内形成了大量不可逆氢化物相。随后的充放电循环中几乎没有不可逆相的形成。非晶相能够有效抑制充氢过程中不可逆相的形成,且充放氢使非晶合金间隙发生了弹性变形。此外,非晶结构使合金在碱性电解液中的自腐蚀电位升高、腐蚀电流降低,显著提高了合金的耐蚀能力。  相似文献   

12.
采用固态烧结法制备了Mg1 7M0 3(M =Mg、Ti、Al)Ni贮氢合金 ,X射线衍射分析结果表明 ,适当提高烧结温度有利于Mg2 Ni相的形成 ;Ti对Mg的取代未引起合金相结构的明显变化 ,而Al取代Mg除有Mg2 Ni相外 ,还有一呈立方晶体结构的新相生成。Ti、Al对Mg的取代 ,不仅提高了Mg2 Ni合金的放电容量 ,同时也提高了合金的循环寿命。  相似文献   

13.
采用基于密度泛函理论的第一原理赝势平面波方法,计算了Cu合金化前后Mg2Ni相及其氢化物的能量与电子结构.负合金形成热的计算结果表明:Cu合金化Mg2Ni形成Mg2Ni(Ⅱ)"1-xCu(x=1/3)的相结构稳定性最高,两个Cu原子最易占据Ni(Ⅱ)的(0,0.5,0.166 67)与(0.5,0,0.5)位置;进一步对其氢化物的解氢反应热进行计算,发现Cu合金化后,氢化物体系解氢反应热与合金化前相比,明显降低,表明Cu合金化Mg2Ni氢化物的解氢能力增强;电子态密度(DOS)与电子密度的计算结果发现:Mg2Ni(Ⅱ)" 1-xCux(x=1/3)相结构最稳定的主要原因在于:Cu合金化后氢化物在费米能级处的成键电子数N(EF)与其它结构相比最少;而Cu合金化Mg2Ni氢化物解氢能力增强的主要原因在于:Cu合金化削弱了氢化物中Mg-Ni和Ni-H间的成键作用以及相应原子在低能级区成键电子数的减少.  相似文献   

14.
纳米晶Mg2-xTixNi0.8Cr0.2四元合金的气态储氢性能   总被引:1,自引:1,他引:1  
纳米晶Mg2-xTixNi0.8Cr0.2(x=0.05,0.10,0.15,0.20)四元合金由纯Mg,Ti,Ni,Cr粉在773 K经4h烧结后机械球磨而成.该合金具有良好的活化性能和吸氢动力学性能.合金在393 K,4.0 MPa氢压条件下,2min内便可以完成总吸氢量的75%(质量分数)以上,Mg1.95Ti0.05Ni0.8C0.2最大吸氢量可达到3.35%.在493 K,0.1 MPa条件下可快速放氢,Mg1.80Ti0.20Ni0.8Cr0.2在18 min内便可完成放氢过程,总放氢量为2.17%.所有合金具有良好的低温吸氢性能,353 K时Mg1.85Ti0.15Ni0.8Cr0.2合金最大吸氢量可达到2.08%.XRD分析结果显示,Ti替代Mg后,合金中主要存在Mg2Ni与Ni两相,另外,还有微量的Mg与TiNi相,TiNi相弥散分布在合金中,对合金的吸放氢性能有一定的催化作用.  相似文献   

15.
为了提高Mg2Ni基合金的储氢动力学性能,通过熔炼方法分别添加金属元素Nd,Zn和Ti来防止镁的氧化和蒸发,将Mg2Ni基合金在有覆盖剂保护的电阻炉中进行熔炼。借助XRD 和 SEM/EDS研究了铸态合金的相组成和微观组织。采用定容法在Sievert’s型PCT测试仪上测试了合金的氢化动力学性能。Nd、Zn和Ti的添加导致了微量相Mg6Ni和Ni3Ti的生成。Nd和Zn溶解在Mg2Ni基合金的α-Mg、Mg2Ni和MgNi2相中。添加Nd元素后,合金的首次吸氢量高于Mg2Ni的,达到2.86%(质量分数)。Mg2Ni基合金的吸氢动力学性能和活化性能均有所提高。在前3次吸放氢循环过程中,添加Zn和Ti的合金吸氢量和吸氢动力学性能均得到提高。采用Hirooka动力学模型分析了合金的氢化动力学性能及反应机制。  相似文献   

16.
Mgl.7M0.3(M=Mg,Ti,Al)Ni贮氢合金结构及性能研究   总被引:1,自引:0,他引:1  
采用固态烧结法制备了Mg1.7M0.3(M=Mg、Ti、A1)Ni贮氢合金,X射线衍射分析结果表明,适当提高烧结温度有利于Mg2Ni相的形成;Ti对Mg的取代未引起合金相结构的明显变化,而A1取代Mg除有Mg2Ni相外,还有一呈立方晶体结构的新相生成。Ti、A1对Mg的取代,不仅提高了Mg2Ni合金的放电容量,同时也提高了合金的循环寿命。  相似文献   

17.
采用基于密度泛函理论(DFT)的平面波赝势(PW-PP)方法,探讨Ti阳离子与F阴离子共同掺杂对氢化物NaMgH3放氢性能影响的内在机制。在F阴离子掺杂替代氢化物中的部分氢提高体系放氢性能的基础上,用Ti取代Na4Mg4H11F中的部分Na。电子结构分析显示,F和Ti共掺杂后,氢的1s能级与Ti的3d能级强的交互作用导致原来靠近费米能级的氢的能级分为两部分:一部分左移远离费米能级;另一部分右移恰好跨越费米能级。同没有掺杂的NaMgH3相比,氢在氢化物中的稳定性降低,有利于氢化物的放氢  相似文献   

18.
用基于密度泛函理论的第一性原理赝势平面波方法,计算了Cr合金化前后Mg2Ni相及其氢化物的能量与电子结构。合金形成热的计算结果表明:Cr合金化Mg2Ni,形成Mg(I)CrNi的相结构最稳定,其中,Cr原子最易占据Mg(I):(0.5,0,z),z=l/9位置;进一步对其氢化物的解氢反应热进行计算,发现Cr合金化Mg2Ni氢化物后,体系解氢所需吸收的热量与合金化前相比明显降低,体系的解氢能力得到增强;电子态密度(DOS)、密集数与差分电荷密度的计算结果发现:Mg(I)CrNi相结构最稳定的主要原因在于体系在费米能级(EF)处附近的成键电子数最多;而Cr合金化Mg2Ni氢化物体系解氢能力增强的主要原因在于:Cr合金化后导致体系的稳定性降低,削弱了H-Ni和H-Mg间的成键作用。  相似文献   

19.
邱述兵 《热加工工艺》2014,(12):126-128,132
以Al、Ti含量和制备方法为试验因素,采用回归分析方法,建立出具有较高预测精度的Mg2Ni系储氢合金最大吸氢量和最大放电容量的回归方程,并进行了Mg2Ni系合金储氢性能的优化研究。结果表明,具有最佳储氢性能的Mg2Ni系储氢合金的试验参数为Al含量0.1%、Ti含量0.1%;制备方法为两步法,制备出的Mg1.8Al0.1Ti0.1Ni合金的最大吸氢量高达3.47%,最大放电容量高达102.5 mA·h/g,且经15次循环后的放电容量仍保持在69.1 mA·h/g。  相似文献   

20.
采用第一原理方法对Mg2Ni及其氢化物电子结构进行计算。计算结果表明:在Mg2Ni合金中,原子间的相互作用主要发生在Ni原子层附近,而沿c轴方向Mg原子与Ni1、Ni2原子相互作用很弱,沿着a、b轴原子间的相互作用强于沿c轴的相互作用;在Mg2Ni氢化物中,Ni原子轨道与H原子轨道在成键区存在较强的s-p-d杂化作用;Mg2Ni合金氢化物在LT→HT的转变中,Mg与NiH4的离子相互作用减弱是造成合金氢化物的稳定性下降的一个原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号