首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
从理论上分析TA15钛合金动态再结晶晶粒生长驱动力,提出动态再结晶晶粒生长等效反驱动力的概念。基于动态再结晶晶粒生长驱动力,建立(描述动态再结晶晶粒尺寸演变)的晶粒生长速率模型及晶粒尺寸模型。以TA15钛合金动态再结晶晶粒尺寸实验测定数据为例,采用遗传算法(GA)优化尺寸模型参数。结果表明,模型计算结果与实验数据能够达到较好的吻合,平均误差为7.4%。  相似文献   

2.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

3.
采用Gleeble-3500热模拟实验机对TC21钛合金进行等温恒应变速率的热模拟压缩实验,研究其在变形温度960℃~1020℃,应变速率0.001s-1、0.01s-1、0.1s-1、1s-1条件下的动态再结晶行为。结果表明,TC21钛合金在变形过程中存在动态回复、动态再结晶现象。当温度一定时,在应变速率≤0.1s-1情况下,随着应变速率的降低,动态再结晶晶粒尺寸变大;在应变速率为1s-1时,变形过程几乎只发生动态回复;当应变速率一定时,随着温度的升高,动态再结晶晶粒尺寸变大。根据流动应力与变形温度和应变速率之间的关系,得到了TC21钛合金动态再结晶激活能Q=258.6kJ/mol;通过对热模拟实验数据的分析计算,建立了动态再结晶演化模型。依据所建模型,并基于DEFORM-3D软件预测了975℃热变形后的晶粒尺寸和动态再结晶体积分数,晶粒尺寸相对误差在±10%以内,较好的验证了模型的准确性。  相似文献   

4.
通过热模拟压缩实验研究了TA15钛合金等温近β变形行为和微观组织演化,定量分析揭示了近β变形温度、应变速率、变形量对TA15合金流动应力和微观组织的影响。结果表明:在近β变形过程中,变形温度升高,应变速率降低,将抑制动态再结晶过程,促进动态回复过程;变形温度降低,应变速率升高,将抑制动态回复过程,促进动态再结晶过程。变形温度是影响等轴α相含量,晶粒尺寸和平均轴比的主要因素,增加应变速率对等轴α相晶粒细化的作用并不明显。在近β温度区间,建立了等轴α相含量和晶粒尺寸与变形温度关系的经验模型。研究结果可为TA15钛合金等温近β成形工艺优化控制提供依据。  相似文献   

5.
通过热压缩试验研究了不同原始组织的TA17钛合金在温度750~950℃和应变速率0.01~20 s~(-1)范围内的热变形行为,并且分析了原始组织晶粒尺寸对TA17钛合金热变形行为的影响。结果表明,TA17钛合金在750~900℃时的变形机制主要以动态再结晶为主,峰值应变随着温度升高和应变速率的降低而降低;而在900~950℃时以动态回复为主,峰值应变随着温度升高而增大。相同变形参数下,原始晶粒尺寸越小,热变形过程中的流变应力越小,动态再结晶程度越大。减小原始组织晶粒尺寸,可以有效提高TA17钛合金的热加工稳定性,扩大热加工的可加工区间。  相似文献   

6.
利用Gleeblel500热模拟试验机研究了β21s钛合金在高温变形条件下的动态再结品行为及晶粒尺寸变化规律.实验结果表明.β2ls钛合金在温度较高、应变速率较低的情况下变形时,表现出典型的动态再结晶行为,动态冉结晶晶粒尺寸随变形温度的升高和变形速率的降低而增大.确定了该合金的激活能为227.07 kJ/mol.应力指数为3.42.Z因子决定着动态再结晶的晶粒尺寸,二者之间为幂指数关系,进一步得出再结晶晶粒尺寸的预测模型,为该合金热变形过程的组织控制提供理论依据.  相似文献   

7.
采用gleeble-1500热模拟试验机及分离式霍普金森压杆技术,对TC6钛合金试样进行高温准静态(0.01s-1)压缩试验及室温高应变率(103s-1)剪切试验,通过光学显微镜及透射电镜对比研究2种变形条件下材料微结构演化特点。结果表明:在2种变形条件下材料微结构演化显著不同。在高温准静态条件下变形时,TC6钛合金微结构演化经历了4个阶段:等轴状α相变形为板条状→板条状α相断裂,同时出现动态再结晶晶粒→动态再结晶晶粒长大→发生α/β相变;在高应变率加载条件下变形时,TC6钛合金微结构演化经历了3个阶段:等轴状α相变形为板条状→位错的快速运动,板条状α相变形为更为细长狭窄的长条状→长条状α相断裂,同时出现少量动态再结晶晶粒;在2种变形条件下,TC6钛合金均发生了动态再结晶,但高温准静态下,动态再结晶晶粒较多且发生长大,尺寸为3~5μm,而高应变率加载条件下形成的动态再结晶晶粒较少且没有长大,尺寸为0.1~0.2μm。  相似文献   

8.
针对我国自主研制的TA32高温钛合金,开展了在变形温度为895-935℃和应变速率为8.3×10-4-1.32×10-2 s-1条件下的高温拉伸变形试验研究,利用电子背散射技术(EBSD)表征了不同变形条件下的晶粒形貌、晶粒取向和分布规律。结果表明:TA32合金具有良好的超塑性变形能力,最大断裂延伸率能达到1141.8%。在高温和低应变速率条件下,晶粒的长大容易造成在变形后期真实应力出现上升现象。真实应力和断裂延伸率对变形温度、变形程度和应变速率均是敏感的,动态再结晶容易在高温或低应变速率条件下发生。动态再结晶程度随着变形温度的升高、应变速率的降低和变形程度的增大而增大,变形后的织构接近随机取向织构,原始晶粒得到等轴化,提高了晶粒尺寸的均匀性。在变形过程中,不连续动态再接晶是主要的动态再结晶机制,随着变形温度的升高、应变速率的降低和变形程度的增大,不连续动态再结晶的作用在增强,连续动态再结晶的作用则是在减弱。  相似文献   

9.
在Gleeble-1500型热模拟实验机上研究TA15(Ti-6Al-2Zr-1Mo-1V)钛合金在温度860-1100℃、应变速率0.001~10/s、变形程度15%-75%条件下的微观组织演变规律。结果表明,该合金在温度860-980℃范围内成形时,随着温度的升高,初生口相减少,动态再结晶逐渐受到抑制;随着应变速率的降低,初生α晶粒略有增大。该合金在1040-1100℃范围内成形时,软化机制主要为动态回复,塑性成形后的组织由扁条状口晶粒构成,晶界处有少量呈锯齿状的再结晶晶粒。基于定量金相测量,建立了TA15钛合金860-980℃高温变形时初生α相体积分数、晶粒尺寸以及再结晶分数模型。将模型与有限元结合,对热压缩成形过程组织演化进行了数值模拟。模型平均误差小于13%,可以满足预测需要。  相似文献   

10.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

11.
通过Gleeble-3500热模拟实验机得出TC6钛合金在变形温度为860~950℃,应变速率为0.01~50 s-1,变形程度分别为30%和50%时的应力-应变曲线。通过金相实验研究了TC6在实验条件下微观组织的演变规律,并建立了TC6在(α+β)两相区塑性变形过程中α相的动态再结晶模型。结果表明:TC6钛合金在低应变速率下变形时,动态回复过程相对增强,动态再结晶受到抑制;相同温度、不同应变速率下的微观组织形貌基本相同,但是随着应变速率的增加再结晶程度增大,组织细化。模型平均误差小于13%,可以满足预测需要。  相似文献   

12.
采用热压缩试验研究置氢量0.22wt%TC21钛合金粉末烧结材料在温度850℃~1000℃和应变速率0.001s-1~0.10 s-1范围内的流变行为和组织演变,分析了该合金烧结材料在试验参数范围内变形的应力-应变曲线特征。动力学分析获得置氢TC21合金粉末烧结材料高温压缩变形的应力指数和变形激活能分别为3.32kJ/mol和442.74kJ/mol,表明置氢TC21合金粉末制品在高温变形过程中均发生了动态再结晶。组织观察发现,在β相区变形时,β晶粒随金属流动方向明显被拉长、变形;在α+β相区变形时,β相的组织变化基本同其在β相区变形时一样,只是β相再结晶过程加剧;在α相区变形时,原始的的片状和等轴状组织中α相组织发生再结晶,初生的α相含量逐渐减少。平面应变状态下发生动态再结晶的临界变形量大于均匀单向压缩状态下的临界变形量。  相似文献   

13.
用Gleeble-1500热模拟试验机对中碳V-N微合金钢在不同变形温度(900~1050℃)及不同变形速率(0.005~30 s-1)的奥氏体区热变形行为进行研究。通过建立真应力-真应变曲线、动态再结晶图、功率耗散效率因子(η)图和应变速率敏感因子(m)图综合分析其热变形行为。结果表明,试验钢在1050℃、1 s-1变形条件下发生了动态再结晶,其真应力-真应变曲线、动态再结晶图、m图等方法得出的结果相互吻合。其中η图与m图差异很小,但由于应变速率敏感因子具有合理的物理意义,因此建议利用m图分析材料的热变形行为和选取最佳热变形工艺参数。  相似文献   

14.
在Gleeble-3500热模拟试验机上对工业纯钛TA1进行单、双道次等温热压缩试验,变形温度为650~850 ℃,道次间隙时间为1~60 s,变形速率为10 s-1,研究了工业纯钛TA1单、双道次热压缩过程中静态软化和动态软化行为。利用光学显微镜对变形后的微观组织进行观察,研究了工业纯钛TA1在不同变形条件下的微观组织演变。结果表明,工业纯钛TA1在单、双道次热压缩变形过程中表现出明显的硬化和软化行为,峰值应力前表现为加工硬化,峰值应力后表现为加工软化,最终达到动态软化和加工硬化的动态平衡。在道次间隙时间内发生静态软化,静态软化程度随着道次间隙时间的增加和温度的升高而增大。随着道次间隙时间的延长和温度的升高,道次间再结晶更加充分,第二道次变形后晶粒尺寸增加更明显,当发生完全再结晶时,软化程度达到最大。在热压缩变形期间,发生动态软化,650 ℃和750 ℃时以动态再结晶为主,850 ℃时以动态回复为主。  相似文献   

15.
通过热模拟压缩试验研究了50SiMnVB合金钢在应变速率为0.01~10 s-1、温度为800~1000℃条件下的高温热变形行为。利用金相显微镜观察了合金压缩变形后的显微组织,结果表明:50SiMnVB合金钢在高温热变形过程中发生了典型的动态回复和动态再结晶行为,其中,动态再结晶以连续再结晶的形式进行,且应变速率越小、温度越高,越容易发生动态再结晶。根据试验结果,基于应变硬化率θ与流动应力σ之间的关系,确定了50SiMnVB合金钢高温热变形动态再结晶的临界应变;采用线性回归拟合建立了包括临界应变方程、峰值应变方程以及体积分数方程的50SiMnVB合金钢的高温变形动态再结晶模型,经对比分析发现,该模型能较好地预测合金钢高温热变形动态再结晶的体积分数;建立了50SiMnVB合金钢高温热变形动态再结晶晶粒尺寸模型。  相似文献   

16.
利用热模拟试验机对片状TA15钛合金进行等温恒应变速率压缩试验,研究了应变速率为10-3~1 s-1、真应变为0.22~0.92、变形温度为900 ℃和950 ℃时片状组织的动态球化行为.结果表明,真应变对动态球化有较大影响,真应变从0.22增加到0.92时,α相的球化率最大增幅为40%;900 ℃和950 ℃变形时α相的球化率差别不大;当应变速率为10-3~10-1 s-1时,降低应变速率能够显著提高片状α相的球化率,但当应变速率大于10-1 s-1后,球化率随应变速率的变化并不明显.TA15钛合金的真应力-真应变曲线均呈"应变软化"型,这种软化行为主要是由片状α相的动态球化和弯折引起的.  相似文献   

17.
在Gleeble-1500热/力机上进行了变形条件对2124铝合金超厚板流变行为与显微组织的影响规律的系列实验研究,得到了不同变形条件下2124铝合金超厚板高温压缩成形过程中的流变曲线。实验结果表明,2124铝合金在0.01s-1~1s-1范围内,高温压缩变形过程存在近稳态流变特征,近稳态流变应力随着应变速率的降低和变形温度的升高而降低。当应变速率为10s-1时,真应力-真应变曲线出现锯齿状,说明合金发生动态再结晶现象。利用OM和TEM分别研究了变形温度、应变速率、应变量对2124铝合金高温压缩变形显微组织的影响,在此基础上,分析并建立了2124铝合金热压缩变形发生动态再结晶的临界条件。  相似文献   

18.
Fe-14Co-10Ni合金的高温塑性变形及热加工图   总被引:2,自引:2,他引:0  
利用Gleeble-3500热力模拟试验机,在温度为850~1150℃,应变速率为0.1~10s~(-1)的条件下,对具有高强韧性的Fe-14Co-10Ni基合金(16CoNi)在高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究.试验结果表明,16CoNi合金的具有较高的动态再结晶温度,完全动态再结晶晶粒的平均尺寸随着Zener-Hollomon参数的增加而减小,并得到了动态再结晶晶粒尺寸与Z参数之间的定量关系.基于动态材料模型建立了16CoNi合金的热加工图(Processing Maps),当以0.1s~(-1)的应变速率,在1050℃变形时,合金的能量消耗效率达到最大值34%.  相似文献   

19.
苏醒  吕旭东 《金属热处理》2021,46(12):46-52
通过MTS热模拟试验机对铸态与锻态GH4738合金在变形温度1000~1150 ℃及应变速率0.01~1 s-1的条件下进行压缩试验,其中压下量为10%、30%、50%。结果显示,两种状态的合金应力-应变曲线均具有典型的动态再结晶特征,存在加工硬化、流变软化和稳态流变3个阶段。由应力-应变曲线得出GH4738合金铸态及锻态热变形激活能分别为Q=575.89 kJ/mol及Q=588.04 kJ/mol。并利用EBSD分析发现,在相同的热变形参数下,锻态GH4738合金组织的动态再结晶要比铸态组织发生得更早、更显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号