首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two powder mixing processes, mechanical mixing (MM) and mechanical alloying (MA), were used to prepare mixed Al/diamond powders, which were subsequently consolidated using spark plasma sintering (SPS) to produce bulk Al/diamond composites. The effects of the powder mixing process on the morphologies of the mixed powders, the microstructure and the thermal conductivity of the composites were investigated. The results show that the powder mixing process can significantly affect the microstructure and the thermal conductivity of the composites. Agglomerations of the particles occurred in mixed powders using MM for 30 min, which led to high pore content and weak interfacial bonding in the composites and resulted in low relative density and low thermal conductivity for the composites. Mixed powders of homogeneous distribution of diamond particles could be obtained using MA for 10 min and MM for 2 h. The composite prepared through MA indicated a high relative density but low thermal conductivity due to its defects, such as damaged particles, Fe impurity, and local interfacial debonding, which were mainly introduced in the MA process. In contrast, the composite made by MM for 2 h demonstrated high relative density and an excellent thermal conductivity of 325 W·m-1·K-1, owing to its having few defects and strong interfacial bonding.  相似文献   

2.
Copper matrix composites were prepared through spark plasma sintering(SPS) process, mixing fixed amount of reduced graphene oxide(rGO) with the different amounts of Cr. In the sintered bulk composites, the layered rGO network and uniform Cr particles distributed in the Cu matrix. Both of mechanical blending and freeze-drying stages of the wet-mixing process obtained the Cu/Cr/rGO mixture powders, and then SPS solid-phase sintering realized the faster densification of these mixture powders. The hardness and compressive yield strength of the Cu–Cr–rGO composites depicted the higher values than those of pure Cu and single rGO-added composite, and they were gradually increased with increasing Cr. The rGO/Cr hybrid second-phases are believed to be beneficial to strengthening Cu matrix. The relevant formation and strengthening mechanisms involved in Cu–Cr–rGO composites were discussed.  相似文献   

3.
由于具备较高的热导率,铜/金刚石复合材料已成为应用于电子封装领域的新一代热管理材料。采用放电等离子烧结工艺(SPS)成功制备含不同金刚石体积分数的Cu/金刚石复合材料,研究复合材料的相对密度、微观结构均匀性和热导率(TC)随金刚石体积分数(50%、60%和70%)和烧结温度的变化规律。结果表明:随着金刚石体积分数的降低,复合材料的相对密度、微观结构均匀性和热导率均升高;随着烧结温度的提高,复合材料的相对密度和热导率不断提高。复合材料的热导率受到金刚石体积分数、微观结构均匀性和复合材料相对密度的综合影响。  相似文献   

4.
Diamond-copper composites were prepared by powder metallurgy, in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements (including B, Cr, Ti, and Si). The influence of the carbide forming element additives on the microstructure and thermal conductivity of diamond composites was investigated. It is found that the composites fabricated with Cu-0.5B coated diamond particles has a relatively higher density and its thermal conductivity approaches 300 W/(m·K). Addition of 0.5%B improves the interfacial bonding and decreases thermal boundary resistance between diamond and Cu, while addition of 1%Cr makes the interfacial layer break away from diamond surface. The actual interfacial thermal conductivity of the composites with Cu-0.5B alloy coated on diamond is much higher than that of the Cu-1Cr layer, which suggests that the intrinsic thermal conductivity of the interfacial layer is an important factor for improving the thermal conductivity of the diamond composites.  相似文献   

5.
This work was to prepare the diamond reinforced Cu54Ni6Zr22Ti18 bulk metallic glass matrix composites using Spark Plasma Sintering (SPS) process. The effect of mixing methods such as mechanical alloying (MA), and turbula mixing–dry mixing (DM) and wet mixing (WM) on the uniformity of constituent phase was also investigated. Examination of microstructure and evaluation of mechanical properties of the composites were performed depending on the mixing processes. As a result, WM composite showed the highest mechanical properties. The experimental results indicated that the mixing method was essential parameter to determine the quality of MG/diamond composites such as the uniformity of phase and binding behavior.  相似文献   

6.
Spark plasma sintering (SPS) was used to fabricate Al/diamond composites. The influence of diamond particle size on the microstructure and thermal conductivity (TC) of composites was investigated by combining experimental results with model prediction. The results show that both composites with 40 μm particles and 70 μm particles exhibit high density and good TC, and the composite with 70 μm particles indicates an excellent TC of 325 W·m−1·K−1. Their TCs lay between the theoretical estimated bounds. In contrast, the composite with 100 μm particles demonstrates low density as well as poor TC due to its high porosity and weak interfacial bonding. Its TC is even considerably less than the lower bound of the predicted value. Using larger diamond particles can further enhance thermal conductive performance only based on the premise that highly dense composites of strong interfacial bonding can be obtained.  相似文献   

7.
Carbon nanofiber(CNF)-reinforced aluminum-matrix composites were fabricated via ball milling and spark plasma sintering(SPS), SPS followed by hot extrusion and powder extrusion. Two mixing conditions of CNF and aluminum powder were adopted: milling at 90 rpm and milling at 200 rpm. After milling at 90 rpm, the mixed powder was sintered using SPS at 560 °C. The composite was then extruded at 500 °C at an extrusion ratio of 9. Composites were also fabricated via powder extrusion of powder milled at 200 rpm and 550 °C with an extrusion ratio of 9(R9) or 16(R16). The thermal conductivity and tensile properties of the resultant composites were evaluated. Anisotropic thermal conductivity was observed even in the sintered products. The anisotropy could be controlled via hot extrusion. The thermal conductivity of composites fabricated via powder extrusion was higher than those fabricated using other methods. However, in the case of specimens with a CNF volume fraction of 4.0%, the thermal conductivity of the composite fabricated via SPS and hot extrusion was the highest. The highest thermal conductivity of 4.0% CNF-reinforced composite is attributable to networking and percolation of CNFs. The effect of the fabrication route on the tensile strength and ductility was also investigated. Tensile strengths of the R9 composites were the highest. By contrast, the R16 composites prepared under long heating duration exhibited high ductility at CNF volume fractions of 2.0% and 5.0%. The microstructures of composites and fracture surfaces were observed in detail, and fracture process was elucidated. The results revealed that controlling the heating and plastic deformation during extrusion will yield strong and ductile composites.  相似文献   

8.
The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites.  相似文献   

9.
B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10?6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.  相似文献   

10.
Mechanical, electrical and thermal properties of nickel-coated single-walled carbon nanotube (SWNT) reinforced copper matrix composites were investigated. The composites were fabricated by means of a powder metallurgy process, which consists of mixing nickel-coated carbon nanotubes with copper powders followed by hot-pressing. A homogeneous mixture could be obtained by the mechanical mixing process due to the similar density of nickel and copper. A high temperature displacement rate tester and a ball-on-disk device were employed to evaluate mechanical and tribological properties. Also, a four-point probe technique and a laser flash method were used to obtain electrical resistance and thermal conductivity. The mechanical and tribological properties of the copper matrix composites significantly improved by the incorporation of nickel-coated SWNT reinforcements. However, electrical resistance and thermal conductivity of the nickel-coated SWNT reinforced copper matrix composites were similar to those of the sintered nickel–copper specimens with the equivalent composition.  相似文献   

11.
通过机械干混和湿混(添加分散剂)两种混合工艺,制备了20%AlNp/Al复合粉末,并通过冷等静压一热挤压制备了亚微米AlNp/Al复合材料。对比分析了两种混合工艺条件下亚微米AlN的分散情况,同时分析和测试了复合材料的显微组织与性能。  相似文献   

12.
Tungsten was plated on the surface of diamond by using thermal diffusion method. Different process parameters were employed to prepare the composites with tungsten, diamond and copper. The micro morphology of different samples was observed, and the thermal conductivity of samples was measured by laser flash method. The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated. The results indicated that plating tungsten on diamond could modify the interface bonding. When the diamond was plated for 60 min, the coating appeared intact, uniform and flat, and the thermal conductivity of the sample could reach as high as 486 W/(m·K). The integrity and uniformity were more important than thickness for the coating. When the tungsten-plated diamond was further annealed, the metallurgical bonding between the coating and the diamond was enhanced, and the thermal conductivity rose to 559 W/(m·K).  相似文献   

13.
Yttria-reinforced copper matrix composites were prepared by dry ball milling (DBM) and wet ball milling(WBM), respectively, followed by spark plasma sintering(SPS). It is to determine which milling process is better for fabricating Cu-Y_2O_3 composites. It is found that Cu-Y_2O_3composites synthesized by DBM exhibit better densification, mechanical and electrical properties than those by WBM. Less agglomeration of reinforcements in the bulk composites by DBM is responsible for the better performances. To further understand the reason of less agglomeration of Y2O_3 in the bulks by DBM, morphologies of prepared powders were investigated and analyzed. Higher ball's impact energy and the formation of copper oxide on the matrix surface during DBM process contribute to small matrix particles, which is beneficial for less agglomeration.  相似文献   

14.
Copper-based composites for thermal conductive components were prepared via the cold spray process, and the deposition efficiency and adhesion morphology of feedstock powders on Cu substrate were evaluated. Cu-based composites were fabricated using Cu-Cr mixed powders with their mixture ratio of 20, 35, 50, and 65 mass% Cr onto oxygen-free copper substrate with N2 carrier gas. Cu-Cr composite coatings were investigated for their Cr content ratio, microstructures, and thermal conductivity. The Cr content ratio in the coating was approximately 50-60% of feedstock mixture ratio due to the low formability of the hard particles. Transmission electron microscopy characterizations revealed that an oxygen-rich layer exists at the Cr particle/Cu substrate interface, which contributes to the deposition of the Cr particles. After the heat treatment at 1093 K, the coatings showed denser cross-sectional structures than those before the heat treatment, and the thermal conductivity was improved as a result of the recrystallization of Cu matrix.  相似文献   

15.
采用放电等离子烧结技术(SPS)和热压法(HP)分别制备用于电子封装领域的多层镀钛金刚石/铜复合材料获得。借助扫描电子显微镜(SEM)分析了复合材料的显微组织,同时对热导率(TC)和热膨胀系数(CTE)等热性能参数进行了分析。层状复合材料的热导率理论值参考改良的哈塞尔曼-约翰逊(HJ)模型,同时考虑TiC界面的影响计算,结果为446.66 W·(m·K)~(-1),而热膨胀系数则通过热膨胀仪测试确定。结果显示,经放电等离子烧结的试样与经热压制备的试样相比,缺陷相对较少,界面的结合对于复合材料热导率的影响十分明显。提出了一个界面影响的模型示意图,热导率随着碳化物层厚度的增加和气孔的出现而减小。由此可见,实现高热导率的条件是复合材料中的碳化物层较薄、同时没有气孔的出现。  相似文献   

16.
The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied.The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 μm-size diamonds.The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated.The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu.It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes.  相似文献   

17.
以Nb,Si粉末为原料,采用放电等离子烧结(SPS)技术,原位合成了密实的Nb/Nb5Si3复合材料。利用扫描电镜(SEM)、电子探针微区分析(EPMA)和X射线衍射(XRD)等手段对材料的组织结构进行了分析,并探讨了材料的结构形成机制。结果表明,合成的材料由近球状的Nb颗粒与Nb-Nb5Si3共晶组织组成;SPS过程中产生的放电等离子体使Si粉及Nb颗粒的表面熔化,熔融的Nb和Si在冷却过程中发生共晶反应而形成Nb-Nb5Si3共晶体,而未反应完的Nb颗粒则均匀分布在共晶组织中  相似文献   

18.
采用溶胶–凝胶法制备陶瓷结合剂粉末和陶瓷结合剂/金刚石混合粉末以及相应的块体材料。研究分散剂(十二烷基苯磺酸钠)质量分数为0~4.02%时,其对陶瓷结合剂物相、耐火度、弯曲强度和热膨胀系数等的影响,以及其对M2.5/5金刚石在陶瓷结合剂/金刚石混合粉末中分散性的影响。结果表明:分散剂质量分数为1.34%时,陶瓷结合剂的耐火度、弯曲强度和热膨胀系数与未添加分散剂时相比未发生明显变化,其中耐火度为700 ℃、弯曲强度为45 MPa 、热膨胀系数为4.3×10?6 ℃?1;当分散剂的质量分数从1.34%增加至4.02%时,陶瓷结合剂的耐火度降至600 ℃,弯曲强度降至28 MPa,热膨胀系数增至7.5×10?6 ℃?1;分散剂质量分数为1.34%时,M2.5/5金刚石均匀分散在陶瓷结合剂/金刚石复合材料中,且未引起复合材料的性能变化。   相似文献   

19.
为研制更高热导率的产品,采用粉末冶金法将金刚石与高纯度铜粉热压在一起,制备新型金刚石/铜复合材料。通过正交分析法,研究了金刚石/铜复合材料热导率的影响因素。结果表明:用粉末冶金法制备的金刚石/铜复合材料,其热导率最高为245.89 W/(m·K)。对金刚石/铜复合材料热导率影响最大的因素是金刚石与铜粉的体积比,并且随着体积比的增大,金刚石/铜复合材料热导率逐渐下降。金刚石/铜复合材料的致密度以及界面结合程度是影响金刚石/铜复合材料热导率大小的重要因素,致密度高、界面结合好的复合材料热导率高,反之则低。   相似文献   

20.
以SiC和镀钨金刚石增强体为原料制备预制体,通过气压浸渗技术在800 ℃,5 MPa条件下制备金刚石–SiC/Al复合材料。利用扫描电镜、红外热成像仪、激光导热仪等对复合材料性能进行分析,研究SiC和金刚石的含量与粒径比对复合材料构型的影响,从而优化复合材料导热性能。结果表明:在相同的SiC粒径下,金刚石体积分数的增加将使复合材料的导热性能明显提升。当金刚石体积分数为30%时,含F100 SiC的复合材料导热性能最佳,其热导率为344 W/(m?K)。当金刚石体积分数相同,粒径比从0.07增大到0.65时,复合材料导热性能依次提升;且在金刚石体积分数为15%时,复合材料的热导率增幅最大,从174 W/(m?K)增大到274 W/(m?K),增长了57%。通过改善金刚石–SiC/Al复合材料中增强体的含量和粒径比可以调控复合材料构型,充分发挥复合材料的导热潜力。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号