首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的研究海底管道在点腐蚀和腐蚀疲劳双重影响下的整个破坏过程,基于动态贝叶斯网络构建系统失效模型,对海底管道系统不同疲劳寿命下的失效概率进行预测。方法将点蚀疲劳损伤过程分为腐蚀点成核、腐蚀坑增长、短裂纹扩展和长裂纹扩展四个阶段,采用蒙特卡洛模拟方法对腐蚀点形成到短裂纹发生前的管道破坏过程进行分析,结合疲劳裂纹扩展的动态贝叶斯网络结构图,在充分考虑相关影响因素不确定性的基础上,为海底点蚀管道系统提出一种创新性的概率分析方法,对点蚀管道疲劳寿命的失效概率进行科学预测。结果结合实例分析,通过蒙特卡洛模拟方法,求解得出腐蚀坑增长转变为短裂纹扩展状态的临界裂纹尺寸为0.8mm。采用动态贝叶斯网络分析方法,对未经受维修保养的点蚀管道进行疲劳寿命预测,当管道运行到第35年时将会面临失效风险。结论所构建的模型可以对海底点蚀管道腐蚀疲劳寿命失效概率进行合理预测,通过观测相关影响参数的变化,及时更新预测结果,有助于为海底管道系统制定有效的维修策略。  相似文献   

2.
Abstract

The present study is carried out to investigate fatigue crack initiation and kinking behaviours of spot welded coach peel (CP) specimens of low carbon steel sheets subjected to cyclic loading by experimental and finite element analysis methods. Evaluations of fatigue crack growth stages were performed by crack tip plastic strains and J integral analyses and also by microhardness measurements on process zone. According to the experimental and analytical results, fatigue crack initiation and growing stages in the spot welded CP specimens can be divided to three stages. Stage I corresponds to 'gap sharpening stage' observed at the beginning steps of cyclic loading with crack growing on the interface plane between the overlapped sheets. Stage II corresponds to kinked crack initiation and propagation through the sheet thickness observed after applying a certain number of loading cycles. Stage III corresponds to crack propagation through the width of the specimens observed at the final step of the fatigue crack propagation. The FE results of the crack paths and crack locations are in good agreement with those of experimental observations.  相似文献   

3.
The effect of magnetic field on the pitting corrosion susceptibility of pure magnesium was investigated by stochastic approaches. Stochastic models had been applied to simulate pitting corrosion as the combination of two physical processes: pit initiation and pit growth. The results revealed that magnetic field increased the pitting corrosion susceptibility of pure magnesium. For the pit initiation process, the presence of magnetic field changed the mechanism of pit initiation from the parallel birth and death stochastic model (B1) to the parallel birth stochastic model (A3). Magnetic field increased the pit generation rate λ while decreased the repassivation rate µ, which indicated that magnetic field accelerated the pit initiation process of pure magnesium. For the pit growth process, magnetic field didn't change the pit growth mechanism, but it could decrease the ability of repassivation of pitting corrosion resulting in a great probability for the stable pitting corrosion to grow up with a higher growth rate and finally develop into larger pit cavity.  相似文献   

4.
Fatigue behavior of aluminum alloy 5454- H32 was studied under laboratory air and 3 % NaCl solution environment using smooth cylindrical and notched plate specimens. Presence of 3 % NaCl environment during fatigue loading drastically reduced alloy fatigue life. The deleterious effect was pronounced in both types of specimens in the long- life regions, where the fatigue lives were lowered by as much as a factor of 10. However, the sharply notched specimens showed only a modest reduction in fatigue life in corrosive environment. The severe influence of the corrosive environment in the long- life (low- stress) regime cannot be explained merely by the early initiation of the fatigue crack from surface pits; the environmental contribution in the early crack growth regime must also be considered an important factor. Fracture surface studies revealed extensive pitting and some secondary cracking in the crack initiation region. It was shown that lowered fatigue life in Al 5454- H32 occurs by early initiation of fatigue cracks from surface pits. In addition, a corrosion pitting and secondary cracking process may be operative in the small crack growth region. This could have enhanced the early crack growth rate and thus contributed to the lower fatigue life in the long- cycle region.  相似文献   

5.
本文研究了2024-T62高强铝合金在带有腐蚀预损伤的基础上的腐蚀小裂纹行为。小裂纹试验采用单边缺口拉伸试样(SENT),在试样半圆形缺口根部预制直径大小为100~300μm的单腐蚀坑,然后在3.5%NaCl溶液中进行疲劳小裂纹试验。采用QUESTAR长焦距显微镜与摄像机相结合的QUESTAR—CCD监测腐蚀小裂纹的萌生及扩展情况。试验结果表明,小裂纹绝大多数萌生在缺口根部腐蚀坑位置,并呈半椭圆形的表面裂纹;该材料在R=0.06恒幅载荷下,小裂纹效应不明显;对应可观测到的最小裂纹长度为6~60μm,裂纹起始寿命约占疲劳寿命的15%~25%。  相似文献   

6.
Effect of corrosion severity on fatigue evolution in Al-Zn-Mg-Cu   总被引:1,自引:0,他引:1  
The effect of existing-localized corrosion on fatigue cracking of 7075-T6511 was established using crack surface marker-band analysis and a fracture mechanics model. The substantial reduction of fatigue life due to EXCO solution L-S surface pre-corrosion is nearly independent of exposure time after initial-sharp degradation, scaling with the evolution of pit-cluster size and initial stress intensity range with exposure time. Independent of exposure time, formation of a resolvable fatigue crack (∼10 μm) accounts for a similar-low (∼5%) fraction of total fatigue life at low stress range (σmax = 150 MPa, R = 0.1). Crack formation occurs at microscopic protrusions into the corroded volume. A corrosion-modified-equivalent initial flaw size (CM-EIFS); predicted with the AFGROW tool using measured initial aspect ratio, initiation cycles, and total fatigue life inputs; accurately represents the corrosion damage effect on fatigue for a range of exposures. The similar deleterious effect of several corroding environments for various-exposed surfaces is described by a lower-bound CM-EIFS with a 300 μm depth and 1200 μm surface length suggesting fatigue is governed by a microscopic pit-based topography. Either an approximate lower-bound, or specific CM-EIFS calibrated by limited measurements of fatigue life for service-environment exposed specimens, can be used to assess the impact of corrosion in a damage tolerant framework. Complexities (e.g., local H embrittlement, 3D pit geometry, topography dependent initiation, and microstructure sensitive small-crack growth) do not compromise the CM-EIFS estimation, but must be better understood for refined modeling.  相似文献   

7.
Abstract

A prepitting procedure to generate a single pit of ‘controlled’ depth on a steam turbine disc steel has been developed using disodium tetraborate–sodium chloride solution. The optimal conditions for controlled pit generation and growth were obtained by varying the ratio of tetraborate to chloride ions and applying an anodic current of 10 μA. The procedure can be used to produce a single pit on a cylindrical specimen, which can be used subsequently for stress corrosion cracking or corrosion fatigue tests. The growth rate and the shape of the pits have also been investigated.  相似文献   

8.
Y.C. Her  P.C. Wang  J.-M. Yang 《Acta Materialia》1998,46(18):6645-6659
Fatigue crack initiation and multiplication of the unnotched SCS-6 silicon carbide fiber-reinforced titanium matrix composites with different matrix and interfacial properties have been investigated experimentally and analytically. Ti–15V–3Al, Ti–6Al–4V, and Ti–22Al–23Nb were chosen as matrix materials. The initiation and propagation of each individual matrix crack as a function of fatigue cycles and applied stress levels were carefully monitored. The statistical distribution of crack growth rates in each composite has been constructed and analyzed. The evolution of normalized matrix crack density and stiffness reduction of these composites under fatigue loading also has been characterized. A modified shear-lag model, coupled with the strain-life equation and a fiber bridging model were used to predict the fatigue crack initiation life, matrix crack growth rate, normalized matrix crack density, and residual stiffness of the composites. The predicted fatigue properties correlated well with experimental results.  相似文献   

9.
胡运明  王中光 《金属学报》1997,33(8):824-830
用扫描电镜观察了受应变疲劳载荷作用的Cu双晶物的表面形貌,发现晶界是疲劳形变双晶是有利的裂纺萌生地点,在滑移带撞击晶界的地方,特别是在几条粗滑移带共同撞击晶界的地方观察到许多疲劳微裂纹;并且发现与平行晶界双晶相比,垂直晶界双晶有有利于疲劳裂纹沿晶界作早期扩展。  相似文献   

10.
Summary

This paper describes HAZ‐notched CTOD tests of multipass welds in SMYS = 420–460 MPa class high‐strength steels for offshore structural applications. The weld metal strength overmatch causes different fracture behaviour depending on the actual CGHAZ toughness. When the CGHAZ is completely embrittled, the weld metal strength overmatch leads to the lower bound critical CTOD value. This is due to elevation of the local stress in the CGHAZ caused by the restraint effect of the overmatched weld metal. The fracture surface is generally flat, and brittle fracture originates from the CGHAZ sampled by the fatigue crack front. A larger fraction of the CGHAZ along the crack front gives a smaller critical CTOD value. When the CGHAZ has moderate toughness, however, the weld metal strength overmatch may produce a higher critical CTOD value at brittle fracture initiation. This is due to crack growth path deviation towards the base metal. Plastic deformation preferentially accumulates to a greater extent on the softer base metal side before the critical stress conditions for brittle fracture initiation occur in the CGHAZ. This asymmetrical plastic deformation promotes deviation of ductile crack growth from the crack tip CGHAZ. In this case, the critical CTOD value does not always reflect the CGHAZ toughness itself.

A notch location nearer the weld metal sometimes causes fracture initiation in the weld metal if the fatigue crack tip samples the CGHAZ. Such experimental data do not reflect the real CGHAZ toughness.

The significance of the critical CTOD value obtained in the tests must be determined in the fracture toughness evaluation of the weld CGHAZ. This paper presents a procedure for evaluation of CTOD test results obtained for HAZ‐notched welds that considers the strength mismatch effect.  相似文献   

11.
The fatigue behavior of the nickel-base superalloy René 88 DT has been investigated at room temperature with fully reversed loading in an ultrasonic fatigue apparatus operating at a frequency close to 20 kHz. A characterization protocol based on the electron backscatter diffraction technique has been developed to identify the combination of microstructural features within crack initiation sites and surrounding neighborhoods that leads to the transition from initiation to early small crack growth. Surface grains that were more than three times the average grain size, that were favorably oriented for cyclic slip localization and that also contained Σ3 twin boundaries inclined to the loading axis were most favorable for fatigue crack initiation. Fatigue cracks subsequently grew in grain clusters within which grains are misoriented by less than 20° relative to the initiation grains. More highly misoriented neighboring grains resulted in crack arrest. The material characteristics that promote crack initiation and small crack growth exist only at the extreme tails of the microstructural distributions. The implications for modeling of fatigue life and fatigue life variability are discussed.  相似文献   

12.
《Scripta materialia》2004,50(1):25-30
LCF experiments, in situ tensile tests and small fatigue crack growth rate measurements on different heats of Inconel 718 alloy with widely different grain sizes have been performed. A fatigue life prediction model including a transition in the crack initiation mechanism (particle/Stage I) is identified. This model is essentially based on Tanaka and Mura model [J Appl Mech 48 (1981) 97] for Stage I initiation and Tomkins model [Philos Magazine 18 (1981) 1041] for fatigue crack growth rate.  相似文献   

13.
《Acta Materialia》2003,51(1):1-15
The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic solid with the lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive rules. The fracture properties are specified through an irreversible cohesive relation. Under monotonic loading conditions, with the applied stress below the yield strength of the uncracked specimen, the initiation of crack growth is found to be governed by the mode-I stress intensity factor, calculated from the applied stress, with the value of Kinit decreasing slightly with crack size due to the reduction in shielding associated with dislocations near a free surface. Under cyclic loading, the fatigue threshold is ΔK-governed for sufficiently long cracks. Below a critical crack size the value of ΔKI at the fatigue threshold is found to decrease substantially with crack size and progressive cyclic crack growth occurs even when Kmax is less than that required for the initiation of crack crack growth in an elastic solid. The reduction in the fatigue threshold with crack size is associated with a progressive increase in internal stress under cyclic loading. However, for sufficiently small cracks, the dislocation structure generated is sparse and the internal stresses and plastic dissipation associated with this structure alone are not sufficient to drive fatigue crack growth.  相似文献   

14.
腐蚀损伤是老龄飞机所面临的一个关键问题,是引发裂纹萌生、扩展并导致飞机结构失效的重要原因,对铝合金的疲劳寿命起决定性作用;腐蚀预损伤如何影响铝合金的疲劳行为是建立含腐蚀损伤铝合金疲劳寿命预测方法的基础,是近年来航空界疲劳断裂领域研究的热点和难点.综述了近年来国内外关于腐蚀预损伤铝合金,尤其是在点蚀情况下的疲劳裂纹萌生和...  相似文献   

15.
Abstract

As a new simulation method, cellular automata (CA) approach had been used in a number of areas, including electrochemistry and corrosion science research. In this work, a probability CA model was developed to simulate the growth of metastable pits. The simulation imaged the morphology of the pit and calculated the time dependences of pitting current and pitting current density. Results demonstrated that the CA approach is capable of simulating corrosion pit in terms of the pit morphology and pit growth kinetics. During growth of a hemispherical metastable pit controlled by diffusion, the time dependence of pitting current follows I?=?f(t2) law. Furthermore, it is determined that, for the simulation results to be consistent with the experimental results, an optimal range for variable d should be 0·1–0·25.  相似文献   

16.
17.
Abstract

Reports in the literature indicate that the fillet geometry affects the fatigue properties of cruciform welded joints in structural steels. In an attempt to study the above effect with respect to stainless steel sheet metal welded joints, load carrying transverse fillet welded cruciform joints having a two fillet geometry were fabricated from AISI 304L stainless steel using gas tungsten arc welding and gas metal arc welding with 308L electrodes. The objective of the present work is to predict the fatigue life of AISI 304L cruciform joints failing at the weld toe using a two stage model. The local stress life method was applied to calculate the fatigue crack initiation life, whereas the fatigue crack propagation life was estimated using fracture mechanics concepts. Constant amplitude fatigue tests with stress ratio R ~ 0 were carried out using a 100 kN servohydraulic Dartec universal testing machine at a frequency of 30 Hz. An automatic crack monitoring system based on crack propagation gauges was used to obtain the propagation data during the fatigue process. The predicted lives were compared with the experimental values.  相似文献   

18.
Pitting corrosion triggered damage is responsible for the degradation of many metallic materials affecting structural integrity. As pitting and crack initiation processes govern the overall life of such structures and components, particularly at nominal cyclic stresses, there is a need to develop simple models to estimate crack initiation life of materials. This paper presents a simple deterministic model that considers the effect of cyclic stressing under pitting corrosion conditions. The developed model is validated on an aluminum alloy 2024-T3, and 12% Cr stainless steel used in aircraft and steam turbines, respectively. The predicted critical pit depth values are in fair agreement with the limited experimental data available in the literature. The model indicates that at high stresses, the crack initiation can occur very rapidly even from relatively small pits. The crack initiation life predictions when compared with the available experimental data, suggest a probable stress-level dependency with regard to the form and extent of the influence of cyclic stresses on pit growth and subsequent crack formation.  相似文献   

19.
This article presents the results of an experimental materials testing program on the effect of hot isostatic pressing (HIP) on the crack initiation, fatigue, and mechanical properties of two cast aluminum alloys: AMS 4220 and 4225. These alloys are often used in castings for high temperature applications. Standard tensile and instrumented Charpy impact tests were performed at room and elevated temperatures. The resulting data quantify improvements in ultimate tensile strength, ductility, and Charpy impact toughness from the HIP process while indicating little change in yield strength for both alloys. In addition standard fracture mechanics fatigue tests along with a set of unique fatigue crack initiation tests were performed on the alloys. Hot isostatic pressing was shown to produce a significant increase in cycles to crack initiation for AMS 4225, while no change was evident in traditional da/dN fatigue crack growth. The data permits comparisons of the two alloys both with and without the HIP process.  相似文献   

20.
Fatigue properties are important parameters for the safety design and security evaluation of pipelines. In this work, fatigue life and fatigue crack propagation of full-thickness X80 pipeline steel joints compared with the base metal (BM) was investigated. Full-thickness BM specimens showed superior fatigue life compared with that of welded joints. The fatigue crack initiation of full-thickness X80 welded joint specimens occurred at the outside weld toe and then grew inward until a fracture was formed. During fatigue crack growth in the heat-affected zone (HAZ), crack growth rate linearly increased with increased ΔK in each HAZ subregion. However, the change rate of fatigue crack growth rate (da/dN) differed among HAZ subregions. This difference was related to the variation in crack path and fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号