首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究2219铝合金的中温流变特性,利用Gleeble-3500热压缩实验机,在不同温度(483~573 K)及应变速率(0.001~5 s~(-1))的条件下进行热压缩实验。实验获得的真应力-真应变曲线表明,流变应力随着温度的降低和/或应变速率的升高而增大,且变形过程中的软化机制主要是动态回复。然后,基于材料变量和激活能对形变参数的依赖性,对传统的Arrhenius型本构模型进行参数修正。经验证,所建立修正的本构模型能很好地预测2219铝合金在中温变形条件下的流变应力。另外,基于此修正模型获得不同条件下的热激活能。激活能随温度和/或应变速率的升高而降低,且受应变和应变速率的耦合作用影响。  相似文献   

2.
通过Gleeble-3800热模拟实验机,在应变速率为0.1~20 s-1、变形温度为900~1200℃的条件下对轻轨用55Q钢进行轴向单道次压缩实验,得到55Q钢的真应力-真应变曲线,并分析研究了不同热加工条件对55Q钢高温流变应力的影响。实验结果表明:在相同变形温度下,低应变速率时的流变应力较低,在相同应变速率下,高温时的流变应力较低,说明低应变速率和高温有利于动态软化。对流变应力、应变速率和变形温度之间的关系进行线性拟合,建立了55Q钢的修正Johnson-Cook本构模型和基于应变补偿的Arrhenius本构模型,对比两种模型发现,基于应变补偿的Arrhenius本构模型的预测精度更高,能够较好地揭示55Q钢的热变形特性。  相似文献   

3.
采用Gleeble-3500热模拟试验机对2024A铝合金进行等温热轧,对其高温流变行为进行了研究。通过试验获得2024A铝合金在温度为300~450℃、应变速率为0.01~10s-1时的真应力-真应变曲线。结果表明,2024A铝合金的流变应力与温度、应变速率和变形量之间呈非线性关系,流变应力随着应变速率增大而升高,随着变形温度的升高而降低。基于试验数据,分别建立考虑应变补偿的Arrhenius和修正的Johnson-Cook(M-JC)本构模型,引入统计学方法对模型精度进行量化评估:Arrhenius模型的平均相对误差和均方根误差分别为5.02%和5.88MPa,M-JC模型的平均相对误差和均方根误差分别为3.72%和5.27MPa,可见M-JC模型预测精度优于Arrhenius模型,说明M-JC模型能更为准确地描述2024A铝合金的高温轧制过程中的流变行为。  相似文献   

4.
使用Gleeble-3500热模拟试验机对TC21钛合金在温度为890~990℃、应变速率为0.01~10 s-1下进行了热模拟压缩实验,研究了该合金的高温流变行为。在变形条件下,该合金的流变应力随应变的增大逐渐增加,在达到峰值后又逐渐减小。基于实验数据,分别采用Arrhenius模型和修正Johnson-Cook模型构建了TC21钛合金本构模型,并对这两个模型的预测精度进行了分析对比。结果表明,修正Johnson-Cook本构模型预测值的平均绝对相对误差eAARE为7.2078%,相关系数r为0.96866;Arrhenius本构模型预测值的eAARE为12.6699%,r为0.95794,修正Johnson-Cook本构模型的精度高于Arrhenius本构模型,且在整个参数范围内具有一定的精度,可以较好地描述TC21钛合金的高温流变行为。  相似文献   

5.
采用Gleeble-3500型热模拟机,分析了2219铝合金在变形温度为330~450℃,应变速率为10~(-2)~10 s~(-1),统一压缩变形量为60%的条件下的热变形行为,研究了应变速率和变形温度对流变应力的影响,建立了超大型环形件用2219铝合金热变形时的本构方程和热加工图。结果表明:2219铝合金的流变应力随变形温度的升高和应变速率的降低而降低;基于应变-应变速率补偿模型建立的本构方程可以更好地预测其流变行为,实验值与预测值的相对误差的标准偏差为6. 7%,最大相对误差绝对值为18. 7%;确定了热加工最佳工艺参数区间:应变速率为10~(-2)~1. 2×10~(-2)s~(-1),变形温度为400~430℃。  相似文献   

6.
在Gleeble-3800热模拟机上采用等温压缩实验研究了5182铝合金在变形温度为573 K~723 K、应变速率为0. 01 s-1~10 s~(-1)、真应变为0~0. 69条件下的高温流变应力行为,建立了5182铝合金热变形的本构方程和热加工图。结果表明:5182铝合金在热变形时,其流变应力呈现出稳态流变特征,随变形温度的升高而降低,随应变速率的增加而增大,但在应变速率ε·≥1 s~(-1)高应变速率下,则出现动态软化现象;可以采用包含Z参数的双曲正弦函数关系来描述5182铝合金高温变形时的流变应力行为;最佳的热变形区域为变形温度400℃~420℃、应变速率0. 01 s~(-1)~0. 1 s~(-1)。  相似文献   

7.
研究了34CrNiMo6钢的高温流变特性,并获得了其最佳热加工工艺窗口。首先,使用Gleeble-3500热模拟实验机对34CrNiMo6钢在变形温度为1173~1473 K、应变速率为0.001~1 s-1条件下进行等温热压缩实验,得到了不同应变速率和变形温度下的真实应力-真实应变曲线,并用Arrhenius模型对材料本构关系进行多元非线性回归,结果表明其回归精度较高。其次,使用流变数据构建了34CrNiMo6钢的热加工图并进行分析,考虑到所有应变情况,34CrNiMo6钢热加工工艺窗口应避开变形温度低于1300 K、应变速率高于0.05 s-1和变形温度高于1400 K、应变速率高于0.14 s-1的区域。最后,金相分析表明:34CrNiMo6钢在应变速率敏感系数、能量耗散率及失稳判据较小的区域具有晶粒不均匀、晶界不规则的特点,这是由于此时动态再结晶不完全;而在应变速率敏感系数、能量耗散率及失稳判据较大的区域发生完全动态回复和动态再结晶,组织比较均匀。  相似文献   

8.
在热冲压过程中,AA7075高强铝合金板料经充分固溶后移入室温模具进行冲压成形并淬火。为表征AA7075铝合金在热冲压工艺中的变形行为,在温度200~480℃、应变速率0.01~10s-1范围内进行了高温拉伸试验。基于Arrhenius类型本构模型、Johnson-Cook模型以及Zerilli-Armstrong模型提出了多种修正本构模型,并应用实验所获流变曲线进行了拟合。提出的修正模型通过将模型参数表示为应变、应变速率及温度相关的多项式函数耦合了应变、应变速率及温度对流变应力的影响,并通过均方误差(MSE)以及相关系数R值对模型流变应力预测准确性进行了评价。结果表明,修正的Johnson-Cook模型能够更加准确的预测AA7075高温流变行为。  相似文献   

9.
通过热拉伸实验,研究了在变形温度473~673 K、应变率0.001~0.1 s~(-1)条件下铝合金2219-O流变应力的变化规律,并建立材料本构关系。实验结果表明:在所研究的温度和应变率范围内,铝合金2219-O流变应力受到加工硬化和动态回复软化机制的综合影响,随着温度的升高,两种机制逐渐达到平衡状态。该材料属于正应变率敏感材料,流变应力随应变率的增加而增大,随温度的增加而降低。基于Hollomen模型,通过考虑应变、应变率和温度之间的耦合效应,建立了中高温下铝合金2219-O材料本构模型。流变应力的预测值与实验值对比表明该模型能够准确地反映铝合金2219-O热拉伸流变行为。  相似文献   

10.
沈智  谢谈  梁培新 《锻压技术》2017,(12):144-149
采用DDL50高温电子万能试验机,在变形温度为298~573 K、应变速率为0.0001~0.01 s-1时,针对6014铝合金薄板进行温拉伸实验研究,基于FieldsBackofen本构方程进行修正,建立了6014铝合金的温拉伸本构模型以描述6014铝合金温拉伸时的流变行为。结果表明:相同应变速率下,随着温度升高,6014铝合金的流变应力降低,伸长率先增加后下降,并且当温度为473 K时,伸长率达到最大值。通过断口扫描电镜照片分析了6014铝合金在473和573 K时断裂过程的差异,温度为473 K时,断口韧窝大且深,表现为典型的韧性断裂,而温度为573 K时,韧窝小且浅,表现为脆性断裂,从微观角度解释了不同温度下伸长率的差异。  相似文献   

11.
为了建立精确模拟6063铝合金高温流变应力的本构方程,在温度为573~773 K和应变速率为0.5~50 s-1的条件下,采用Gleeble-1500热模拟机进行等温热压缩实验。结果表明:可以采用参数Z描述温度和应变速率对6063铝合金热变形行为的影响,建立的本构方程中的材料常数(α,n,Q和A)可以表示成应变的4次多项式函数。模拟结果表明:所建立的本构方程能精确预测6063铝合金高温流变应力,因此,本构方程适合用于模拟热变形过程,如挤压和锻造,并且可以在工程应用中正确设计变形参数。  相似文献   

12.
汽车用5182铝合金板材的温拉伸流变行为   总被引:5,自引:0,他引:5  
在变形温度为323~573 K、应变速率为0.001~0.1/s条件下,采用Instron-8032电子拉伸实验机对汽车用5182铝合金板的流变行为进行研究,采用修正后的Fields-Backofen方程描述5182铝合金温拉伸时的流变行为,建立5182铝合金在温拉伸时的应力-应变本构模型.结果表明:在同一应变速率下,合金的流变应力随温度升高而降低;对于较高温度(448、523和573 K)、较低应变速率(ε=0.001/s),合金的流变应力出现明显的峰值应力,表现出动态再结晶特征;随着应变速率增加,合金的流变应力呈现稳态,表现出动态回复特征.  相似文献   

13.
从低压铸造后的A356.2铝合金铸旋轮毂的旋压坯料中取样,利用电子万能试验机进行高温拉伸试验,研究应变速率在0.0001~0.1 s~(-1),变形温度在573~673 K范围内该合金的高温拉伸流变行为。使用光学显微镜分析低压铸造后的原始铸态组织与拉伸断口处的显微组织。结果表明应变速率与变形温度对该合金的流变行为有显著影响,流变应力随温度的降低与应变速率增加而上升;伸长率随变形温度的升高和应变速率的减小而增大。变质处理后的A356.2铝合金中共晶体与α-Al枝晶分布均匀,共晶硅呈点状或蠕虫状。温度为573 K时的拉伸断口附近的金相组织没有发生明显变化,而673 K时的拉伸断口处的金相组织呈现出明显的塑性变形现象。A356.2铝合金的高温拉伸流变行为可以用Zener-Hollomon参数模型描述。通过线性回归计算出变形激活能Q=317.43 k J·mol~(-1),材料常数A=1.558×1023 s~(-1),n=7.94,α=0.0165 MPa~(-1),得出A356.2铝合金Arrhenius方程;利用双曲正弦模型建立了高温拉伸条件下的流变应力本构模型。  相似文献   

14.
利用Gleeble1500热模拟试验机在温度范围600~900℃、应变速率范围10-2~10 s-1等对HC1150/1400MS马氏体钢试件进行等温拉伸试验,进而构建了马氏体钢热加工过程的数值模拟需要的高温本构模型,用以根据应变、应变速率及变形温度预测流动应力。试验得到该材料奥氏体组织在不同温度及应变速率下的真应力、真应变曲线,显示材料的流动应力随变形温度的降低和应变速率的提高而增大,随变形温度的升高和应变速率的降低而减小。选用修正的Arrhenius双曲正弦模型对其高温力学行为进行描述,采用四次多项式拟合获得Arrhenius本构方程中参数α,β,n1,n,ln A,Q与应变的对应关系,最终确定包含变形温度及应变速率的流变应力计算方程。采用拟合度表示计算应力与实测应力的相关性,拟合度结果表明该本构模型对HC1150/1400MS马氏体钢高温流动应力的预测较准确。  相似文献   

15.
在温度为1123~1423 K,应变速率为0.01~10 s-1条件下,对Ti-6Al-2Sn-4Zr-6Mo(Ti6246)合金进行高温热压缩试验。研究温度、应变速率和应变对Ti6246合金高温流变应力的影响规律,建立了该合金考虑应变补偿的Arrhenius本构模型,同时获得了热激活能Q和本构模型中材料参数对应变的响应规律。将模型计算结果与热压缩试验值进行对比发现,预测结果较为准确,其相关系数(R)及平均相对误差(AARE)分别为0.9984和1.71%,表明该合金热变形过程中的流变应力可用构建的应变补偿Arrhenius本构模型来描述。  相似文献   

16.
在变形温度为973~1123 K和应变速率0.01~10 s~(-1)条件下对Cu-6%Ag(质量分数)合金进行等温热压缩试验。利用试验所得流变应力-应变曲线,分析了高应变速率下Cu-6%Ag合金高温塑性变形时微观组织的演变行为;研究了高温塑性变形中材料的变形机制;构建了一种简化的本构模型,并引入Arrhenius方程及Z参数对模型进行改进。结果表明:Cu-6%Ag合金在热塑性变形过程中发生了明显的动态回复和动态再结晶;在应变速率为0.1、1及10 s-1,温度为1123 K的变形条件下发生孪生,造成流变应力突变而升高,出现应力谷值;经改进后的本构模型,考虑了应变、变形温度及变形速率对流变特性的影响,预测精度较高,更利于通过计算机语言写入有限元软件进行分析计算。  相似文献   

17.
为了获得7075高强铝合金的温热成形合理变形的工艺参数,采用Gleeble-3500热模拟试验机测试7075-T6铝合金的应力-应变曲线。研究了该合金在变形温度为150~300℃和应变速率为0.01~10 s^(-1)条件下的流变行为,并基于Arrhenius本构方程建立了0.3~0.6应变下7075-T6铝合金的热加工图,最后结合金相显微组织验证了热加工图的可靠性和实用性。结果表明:7075-T6铝合金对变形温度、应变速率、应变量具有高度敏感性,热形变激活能Q=291.151 kJ·mol^(-1);修正后的Arrhenius本构方程的拟合结果良好,相关系数r值与平均绝对误差AARE分别为99.65%和5.54%,能较好地预测7075-T6铝合金的流变行为;在应变为0.6时,最佳的温热加工安全区域范围为温度为250~300℃、应变速率为0.01~0.05 s^(-1)。  相似文献   

18.
6061铝合金热变形行为的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟实验机研究了6061铝合金在变形温度573~773 K、应变速率0.01~2 s-1、最大变形程度45%条件下的高温压缩变形行为,分析了合金在高温变形过程中流变应力与应变速率和变形温度之间的关系,建立了6061铝合金高温变形的本构关系.结果表明:合金的流变应力随变形温度的升高而降低,随应变速率的增大而增大;试验条件下,该合金的流变行为可用Zener-Hollomon参数来描述,变形激活能为236.858 kJ/mol,应力指数为8.926.  相似文献   

19.
2618铝合金的热变形和加工图   总被引:21,自引:3,他引:21  
在Gleeble-1500D热模拟仪上进行热压缩实验,研究了变形温度为573~773 K、应变速率为0.01~10s-1时2618铝合金的热变形行为.热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,平均激活能为181 kJ/mol,大于其自扩散激活能.根据材料动态模型,计算并分析了2618铝合金的加工图.利用加工图确定了热变形的流变失稳区,并且获得了试验参数范围内的热变形过程的最佳工艺参数,其热加工温度为623~723 K,应变速率为0.01 s-1,温加工温度为573 K左右,应变速率为0.01 s-1.  相似文献   

20.
利用Gleeble-3500热压缩试验机,在不同的应变速率(0.01~01 s~(-1))和温度(350~500℃)获得了2219铝合金的真应力-真应变曲线,研究了2219铝合金的高温流动特性。然后,考虑到应变的影响,建立了应变补偿的双曲正弦本构模型。结果表明:2219铝合金流动应力随着变形温度降低和应变速率升高而增加。建立的应变补偿的双曲正弦模型能够很好地预测2219铝合金在高温变形过程中的流动行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号