首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
选择稍高于共晶反应温度作为等温热处理温度,对铸态Mg-15Gd-2Zn-0.6Zr合金进行等温热处理,获得了半固态球化组织。研究了热处理温度和保温时间对半固态组织的影响,探讨了半固态组织演变机制及适用于低温等温热处理的半固态Mg-Gd-Zn-Zr合金成分设计。结果表明,液相组织具有低的温度敏感性,其组织演变主要机制为α-Mg表面熔化和α-Mg动态再析出,而固相颗粒球化机制为:α-Mg树枝晶→枝晶臂粗化→枝晶臂合并、不规则多边形化→球化。  相似文献   

2.
Huang  Xiao-feng  Ma  Ya-jie  Zhang  Qiao-qiao  Wei  Lang-lang  Yang  Jian-qiao 《中国铸造》2019,16(1):53-62
The content and kind of trace elements in magnesium alloys have important effects on their ascast and semi-solid microstructures. In this research work, effects of trace Cr on as-cast and semi-solid microstructures of ZC61 magnesium alloy were investigated by metal mold casting and semi-solid isothermal heat treatment. The results show that the addition of Cr can refine the α-Mg phase without generating a new phase, noticeably change the eutectic phase, and decrease the average size of solid particles at the same isothermal heat treatment conditions. Non-dendritic microstructures of all alloys are constituted of α_1-Mg phases, α_2-Mg phases and eutectic phases after water quenching. With isothermal temperature increased or holding time prolonged, the eutectic microstructure(α-Mg+MgZn_2+CuMgZn) at the grain boundaries in as-cast alloy is melted preferentially and then turned into semi-solid non-dendritic microstructure by processes of initial coarsening, microstructure separation, spheroidizing and final coarsening. Especially when the ZC61-0.1 Cr alloy was treated at 585 ℃ for 30 min, the ideal non-dendritic microstructure can be obtained, and the corresponding solid particle size and shape factor were 37.5 μm and 1.33, respectively. The coarsening process of solid α-Mg phase at higher temperature or longer time, which is affected by both combining growth and Ostwald ripening mechanism, is refrained when Cr is added to the ZC61 alloy.  相似文献   

3.
采用熔炼工艺制备了Mg-2.0Zn-0.2Ca与Mg-2.0Zn-0.2Ca-2Y合金,研究了两种合金的铸态组织及力学性能。结果表明,Y元素的添加细化了Mg-2.0Zn-0.2C合金的铸态组织。Mg-2.0Zn-0.2Ca合金主要由α-Mg与少量Mg7Zn3相组成,添加2wt%的Y后,改变了Zn在Mg基体中的固溶度,降低了其固溶强化效果,同时组织中形成了I相和W相。添加Y元素后,合金的规定塑性延伸强度升高,从41.0 MPa升高到50.6 MPa;伸长率降低,从12.6%降低到4.0%。  相似文献   

4.
The application of segmental semi-solid thixoforming of magnesium alloys is confined due to the dimensional distinction existing in solid particles of the alloy billet from edge to center zones. In the present study, the effects of Sm addition on the microstructural evolution of Mg-6Zn-0.4Zr and Mg-6Zn-4Sm-0.4Zr alloys by semi-solid isothermal heat treatment were investigated, to obtain optimum semi-solid microstructures for the subsequently thixoforming. The results indicate that the grains of the Sm-bearing alloy are evidently refined and gradually evolve from dendritic to globular and elliptic particles. In addition, the distinctly dimensional effect of the Mg-6Zn-0.4Zr alloy is eliminated with 4% Sm addition; the particle sizes in all zones from center to the edge of the billet are almost identical. With the increment of isothermal heat treatment temperature, the dendritic microstructures completely disappear, and meanwhile, the irregular and globular particles gradually form. The size, morphology and the distribution of solid particles mainly depend on the formation and permeation of the liquid phase in the process of isothermal heat treatment. As the isothermal temperature increases from 570 °C to 610 °C, the average size and shape factor of solid particles of both the alloys with and without Sm addition gradually decrease while the liquid fraction gradually increases.  相似文献   

5.
A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed.And the microstructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal heat treatment was investigated. The mechanism of the microstructure evolution and the processing conditions for isothermal heat treatment were also discussed.The results show that the microstructures of cast alloys consist ofα-Mg,β-Mg17Al12 and a small amount of Al-Mn compounds.After holding at 520℃ for 3 min,the phases ofβ-Mg17Al12 and eutectic mixtures in the Mg-14Al-0.5Mn alloy melt and the microstructures ofα-Mg change from developed dendrites to irregular solid particles.With increasing the isothermal time,the amount of liquid increases,and the solid particles grow large and become spherical.When the holding time lasts for 20 min or even longer,the solid and liquid phases achieve a state of dynamic equilibrium.  相似文献   

6.
A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal heat treatment was investigated. The mechanism of the microstructure evolution and the processing conditions for isothermal heat treatment were also discussed. The results show that the microstructures of cast alloys consist of α-Mg,β-Mg17Al12 and a small amount of Al-Mn compounds. After holding at 520 ℃ for 3 min, the phases of β-Mg17Al12 and eutectic mixtures in the Mg-14Al-0.5Mn alloy melt and the microstructures of α-Mg change from developed dendrites to irregular solid particles. With increasing the isothermal time, the amount of liquid increases, and the solid particles grow large and become spherical. When the holding time lasts for 20 min or even longer, the solid and liquid phases achieve a state of dynamic equilibrium.  相似文献   

7.
The feasibility of fabricating ZA84 magnesium alloy with non-dendritic microstructure by a semi-solid isothermal heat treatment process and the effects of holding temperature and time on the semi-solid isothermal heat-treated microstructure of the alloy were investigated. The results indicate that it is possible to produce ZA84 alloy with non-dendritic microstructure by suitable semi-solid isothermal heat treatment. After being treated at 560-575℃ for 120min, ZA84 magnesium alloy can obtain a non-dendritic microstructure with 14.2%-25.6% liquid fraction and an average size of 56-65μm of the unmelted primary solid particles. With the increasing holding time from 30 to 120min or holding temperature from 560 to 575℃, the average size of unmelted primary solid particles decreases and globular tendency becomes more obvious. Under the experimental condition, the microstructural evolution of ZA84 alloy during semi-solid isothermal treatment is mainly composed of three stages of initial coarsening. structulseparation and spheroidization. The subsequent coarsening of spheroidal grains is not observed.  相似文献   

8.
研究铸态、挤压态和挤压峰值态的Mg-6Zn-xEr合金的微观组织和力学性能。结果表明,Er的加入可显著改善Mg-6Zn合金的力学性能,经过峰值时效后合金的力学性能得到进一步提高;挤压态Mg-6Zn-0.5Er合金经过峰值时效处理后具有最佳的拉伸强度。该合金的抗拉强度和屈服强度分别为329MPa和183MPa,伸长率为12%。这表明添加0.5%Er可显著提高Mg-6Zn合金的时效硬化行为。挤压峰值态Mg-6Zn-0.5Er合金较好的力学性能归因于结构的细化和β1相的析出强化。  相似文献   

9.
研究了往复挤压对准晶增强Mg-0.85Zn-0.15Y-0.6Zr铸态合金显微组织及力学性能的影响。结果表明,往复挤压可大幅度细化Mg-0.85Zn-0.15Y-0.6Zr铸态合金组织,且使I相等相对均匀地分布在α-Mg基体中。同铸态合金相比,挤压后Mg-0.85Zn-0.15Y-0.6Zr合金的屈服强度、抗拉强度和延伸率分别提高了75.8%,43.2%和35%。  相似文献   

10.
An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn- Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magnesium alloy. In this article, phase constituents and the effect of reciprocating extrusion on microstructures and properties of the as-cast Mg-6.4Zn-1.1 Y alloy are analyzed. The microstructure of the as-cast Mg-6.4Zn-1.1 Y alloy consists of the α-Mg solid solution, icosahedral Mg3YZn6 quasicrystal, and Mg3 Y2Zn3 and MgZn2 compounds. After the alloy was reciprocatingly extruded for four passes, grains were refined, Mg3 Y2 Zn3 and MgZn2 phases dissolved into the matrix, whereas, Mg3 YZn6 precipitated and distributed uniformly. The alloy possesses the best performance at this state; the tensile strength, yield strength, and elongation are 323.4 MPa, 258.2 MPa, and 19.7%, respectively. In comparison with that of the as-cast alloy, the tensile strength, yield strength, and elongation of the reciprocatingly extruded alloy increase by 258.3%, 397.5%, and 18 times, respectively. It is concluded that reciprocating extrusion can substantially improve the properties of the as-cast Mg-6.4Zn-1.1 Y alloy, particularly for elongation. The high performance of the Mg-6.4Zn-1.1 Y alloy after reciprocating extrusion can be attributed to dispersion strengthening and grain-refined microstructures.  相似文献   

11.
Microstructural studies have been made on the Mg-0.54Zr,Mg-5.68Zn andMg-5.65Zn-0.50Zr alloys in the as-cast and homogenized states.The lenticular plates of{012}twins were found in three alloys.After homogenization,ZrH_2 phase formed in theMg-0.54Zr alloy.The Mg_7Zn_3 phase of cubic structure with a=1.417 nm distributes at thegrain boundaries of the Mg-5.68Zn alloy in the as-cast state and after homogenization,theMg_7Zn_3 phase dissolves and the MgZn_2 phase occurs.The as-cast Mg-5.65Zn-0.50Zr al-loy consists of MgZn_3 phase and Zn-Zr compounds.After homogenization,the dispersedacicular MgZn_2 phase may precipitate.  相似文献   

12.
An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn-Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magnesium alloy. In this article, phase constituents and the effect of reciprocating extrusion on microstructures and properties of the as-cast Mg-6.4Zn-1.1 Y alloy are analyzed. The microstructure of the as-cast Mg-6.4Zn-1.1 Y alloy consists of the a-Mg solid solution, icosahedral Mg3 YZn6 quasicrystal, and Mg3 Y2Zn3 and MgZn2 compounds. After the alloy was reciprocatingly extruded for four passes, grains were refined, Mg3 Y2 Zn3 and MgZn2 phases dissolved into the matrix, whereas, Mg3YZn6 precipitated and distributed uniformly. The alloy possesses the best performance at this state; the tensile strength, yield strength, and elongation are 323.4 MPa, 258.2 MPa, and 19.7%, respectively. In comparison with that of the as-cast alloy, the tensile strength, yield strength, and elongation of the reciprocatingly extruded alloy increase by 258.3%, 397.5%, and 18 times, respectively. It is concluded that reciprocating extrusion can substantially improve the properties of the as-cast Mg-6.4Zn-1.1 Y alloy, particularly for elongation. The high performance of the Mg-6.4Zn-1.1 Y alloy after reciprocating extrusion can be attributed to dispersion strengthening and grain-refined microstructures.  相似文献   

13.
14.
采用常规铸造法和等径道角挤压分别制备了镁合金ZK60-RE半固态坯;用金相显微镜研究了2种半固态坯料在等温热处理过程中的微观组织演变。结果表明:与传统铸造方法制备的半固态坯相比,采用等径道角挤压制备的半固态坯的晶粒细小、圆整,适合于半固态成形。在等温热处理过程中,2种坯料晶粒粗化的机制是合并长大和Ostwald长大。铸态坯料晶粒液相来源于非平衡凝固时在晶内产生的共晶组织,以及在随后的合并长大过程中晶粒所包裹的液相。随着保温时间的延长,铸态坯料的晶粒尺寸变化情况是:增大、减小然后又增大;而挤压态坯料的晶粒尺寸呈单一增大趋势。  相似文献   

15.
通过对比Cu-Ca合金铸态组织,研究了半固态等温处理主要工艺参数对半固态Cu-Ca合金组织的影响,得出了其半固态组织的演变规律。结果表明,在半固态等温处理工艺参数中,影响组织的主要参数为等温温度和保温时间。在一定选择范围内,随着等温温度的升高和保温时间的延长,组织将发生由树枝晶组织到非枝晶组织的一系列转变。研究发现,保温温度为957~967℃,等温时间为45~60min时,合金的球化效果最好,圆整度最高。  相似文献   

16.
The microstructural evolution process of fined-grained ZA27 alloy during partial remelting has been investigated.The relationship between the as-cast and semi-solid microstructures has been discussed in particular.The results indicate that a semi-solid microstructure with small and spheroidal primary particles can be obtained when the Z.A27 alloy is partially remelted.The microstructural evolution can be divided into four stages,the initial coarsening of the dendrites due to coalescence of dendrite arms,structural separation resulted from the melting of residual interdendritic eutectic,spheroidization due to the partial melting of solid particles and final coarsening attributed to the coalescence and Ostwald ripening.An equiaxed dendrite in the as-cast microstructure may evolve into one spheroidal particle in the semi-solid microsturucture after being partially remelted.The more equiaxed the dendrites in an as-cast microstructure are,the more spheroidal the solid particles in the semi-solid microstructure will be.Finer primary particles could be obtained if the alloy with finer as-cast microstructure was partially remelted.However,due to the coalescence effect,their sizes cannot be reduced further if the refined as-cast microstructure reached a certain extent.  相似文献   

17.
The microstructure evolution of AZ91D magnesium alloy in the semi-solid state has been proposed or reported in previous literature. However, no detailed investigation has been conducted regarding the relationship between the microstructure and tensile mechanical properties of the thixoformed AZ91D magnesium alloy. In this paper, the microstructure of AZ91D alloy with the addition of yttrium was produced by the semi-solid thermal transformation (SSTT) route and the strain-induced melt activation (SIMA) route, respectively. Isothermal holding experiments investigated grain coarsening and the degree of spheroidization as a function of holding time in the semi-solid state. The SSTT route and the SIMA route were used to obtain the semi-solid feedstock for thixoforming. The results show that solid particles of the SSTT alloy are spheroidized to some extent but the previous irregular shape is still obvious in some of them. While the SIMA alloy exhibits ideal, fine microstructure, in which completely spheroidized solid particles contain little entrapped liquid. The microstructure of the SSTT alloy is less spheroidized compared with the SIMA alloy under the similar isothermal holding condition. As the holding time increases, the mean solid particle size of the SSTT alloy decreases initially, then increases, while the mean solid particle size of the SIMA alloy increases monotonously at 560 °C. Compared with the SSTT alloy, the SIMA alloy obtains finer grains under the similar isothermal holding condition. The mechanical properties of the thixoformed AZ91D alloy with the addition of yttrium produced by the SIMA route are better than those of the thixoformed alloy produced by the SSTT route. The ultimate tensile strength, yield strength and elongation for the thixoformed alloy produced by the SIMA route are 303.1 MPa, 147.6 MPa and 13.27%, respectively. The tensile properties for the AZ91D alloy with the addition of yttrium thixoformed from starting material produced by the SIMA route are better than those of the AZ91D alloy with the addition of yttrium thixoformed from starting material produced by the SSTT route.  相似文献   

18.
Mg-7Zn-3Al-xEr(x=0.1,0.4,0.7) magnesium alloys were prepared by permanent mould casting.The effects of rare earth element of erbium on the microstructure and mechanical properties of as-cast Mg-7Zn-3Al alloy at both room temperature and elevated temperatures were investigated with optical microscopy,scanning electron microscopy/energy dispersive X-ray spectroscopy,differential scanning calorimetry,and tensile testing.The results show that the quasi-continuous grain boundary networkedτ(Mg_(32)(Al,Zn)_(49)...  相似文献   

19.
The feasibility of fabricating ZL104 aluminum alloy with non-dendritic microstructure by semi-solid isothermal heat treatment process and the effects of holding temperature and time on the semi-solid isothermal heat-treated microstructure of the alloy, are investigated. The research results indicate that it is possible to produce ZL104 alloy with non-dendritic microstructure by a suitable semi-solid isothermal heat treatment. After treated at 580 ℃ for 120 min, the ZL104 alloy can obtain a non-dendritic mic...  相似文献   

20.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪和万能力学试验机等研究了固溶和时效处理对Mg-8Gd-3Y-1.5Zn-0.6Zr合金显微组织和力学性能的影响。结果表明,Mg-8Gd-3Y-1.5Zn-0.6Zr合金铸态、固溶态和时效态的显微组织均由α-Mg基体、Mg5(Gd, Y, Zn)相和LPSO结构组成;合金经固溶和时效处理后的最大抗拉强度由铸态的187.96 MPa提高到241.93 MPa,提高了28.71%,伸长率由铸态的8.48%提高到13.91%,提高了64.03%;不同热处理状态下合金的拉伸断口形貌主要以脆性断裂为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号