首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, a hot tearing measured system with external excitation coil and a differential thermal analysis system with applied magnetic field were used to study the effects of low-frequency alternating magnetic field on the solidification behavior and hot tearing susceptibility(HTS) of the AXJ530 alloy under different magnetic field parameters. The hot tearing volume of the castings was measured via paraffin infiltration method. The microstructure of the hot tearing zone of the casting was observed using optical microscopy and scanning electron microscopy, and the phase composition was analyzed using X-ray diffraction and energy depressive spectroscopy. The experimental results show that the solidification interval of AXJ530 alloy was shortened and the dendrite coherency temperature of the alloy decreased with the increase in frequency of alternating magnetic field. Under appropriate magnetic field parameters, the electromagnetic force could enhance the convection in the melt to promote the flow of the residual liquid phase, refine the microstructure, and optimize the feeding channel in the late solidification stage, which reduced the HTS of the alloy. However, when the magnetic field frequency was increased to 15 Hz, the induced current generated excessive Joule heat to the melt. At this time, the thermal action of the magnetic field coarsened the microstructure of the alloy, resulting in an increase in HTS of the alloy.  相似文献   

2.
Al-Cu合金具有较宽的凝固间隔,并且由于供给不足容易出现热裂和气孔缺陷。采用约束棒铸造(CRC)模具研究了氢含量对Al-xCu合金热裂敏感性(HTS)的影响。通过分析熔体中不同氢含量的Al-xCu合金的热裂敏感性值、断裂形态和微观结构,研究了孔隙形成对热裂行为的影响。结果表明,随着熔体氢含量的增加,合金在凝固后期由于晶粒粗化和液相供给不足,热裂敏感性明显增加。提出了一种基于孔隙率的热裂形成机制,以解释孔隙率和热裂之间的相互作用。  相似文献   

3.
增压涡轮用镍基高温合金的凝固特性和热裂倾向性   总被引:1,自引:0,他引:1  
研究了增压涡轮用镍基高温合金K418和K419的凝固特性和热裂倾向性。同时研究了合金元素的偏析行为和析出相。结果表明,凝固末期多种强枝晶间偏析元素在液相中的偏聚导致K419合金的凝固行为较K418复杂。多种元素在枝晶间剩余液相中的偏聚导致K419合金的液相线极低。K419合金凝固过程中漫长的剩余液相期的存在严重削弱了枝晶间结合力,增加了其热裂倾向性。基于一种热裂敏感区模型提出热裂倾向性系数判据,K419合金的热裂倾向性系数高于K418合金。  相似文献   

4.
A systematical study on the relationship between the amounts of different eutectic phases especially the low-melting-point (LMP) eutectics and the hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidification was performed. By controlling the concentrations of major alloying elements (Cu, Mg), the amounts of LMP eutectics at the final stages of solidification were varied and the corresponding hot tearing susceptibility (HTS) was determined. The results showed that the Al−4.6Cu−0.4Mg (wt.%) alloy, which contained the smallest fraction of LMP eutectics among the investigated alloys, was observed to be the most susceptible to hot tearing. With the amount of total residual liquid being approximately the same in the alloys, the hot tearing resistance is considered to be closely related to the amounts of LMP eutectics. Specifically, the higher the amount of LMP eutectics was, the lower the HTS of the alloy was. Further, the potential mechanism of low HTS for alloys with high amounts of LMP eutectics among ternary Al−Cu−Mg alloys was discussed in terms of feeding ability and permeability as well as total viscosity evolution during solidification.  相似文献   

5.
Progressive solidification is usually considered an effective strategy to reduce the hot tearing susceptibility of a cast component.In this study,special constrained plate castings with progressive changes in cross-section were designed,which enabled progressive solidification.The hot tearing behavior of a newly developed NZ30 K Mg alloy(Mg-3.0 Nd-0.2 Zn-Zr,wt.%)was studied under progressive solidification using various mold temperature distributions and constraint lengths.Of these,a homogeneous mold temperature distribution is found to be the best option to avoid hot tearing,followed by a local low mold temperature distribution(with a chiller),then a gradient mold temperature distribution.Unexpectedly,compared with the homogeneous mold temperature distribution,adding a chiller does not provide any further reduction in the hot tearing susceptibility of the NZ30 K Mg alloy.A high mold temperature and a short constraint length increase the hot tearing resistance of cast Mg alloys.Progressive solidification is not a sufficient and necessary condition to avoid the formation of hot tearing.The two key factors that determine the occurrence of hot tearing under progressive solidification are the maximum cooling rate and the constraint length.Decreasing these values can reduce the incidence of hot tearing.  相似文献   

6.
To predict hot tearing susceptibility (HTS) during solidification and improve the quality of Al alloy castings, constitutive equations for AA6111 alloys were developed using a direct finite element (FE) method. A hot tearing model was established for direct chill (DC) casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion. By applying this model to real manufacture processes, the effects of casting speed, bottom cooling, secondary cooling, and geometric variations on the HTS were revealed. The results show that the HTS of the billet increases as the speed and billet radius increase, while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases. This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation, which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality.  相似文献   

7.

Hot tearing is one of the most serious defects during the casting solidification process. In this study, a new type of multichannel “cross” hot tearing device was designed. The hot cracks initiation and propagation were predicted by the relationship between temperature, shrinkage force and solidification time during the casting solidification process. The reliability and practicability of the multichannel “cross” hot tearing device were verified by casting experiments and numerical simulations. The theoretical calculation based on Clyne-Davies model and numerical simulation results show that the hot tearing tendency decreases in the order: 2024 Al alloy>Al-Cu alloy>Al-Si alloy at a pouring temperature of 670 °C and a mold temperature of 25 °C. Feeding of liquid films at the end of solidification plays an important role in the propagation process of hot tearing. The decrease of hot tearing tendency is attributed to the feeding of liquid film and intergranular bridging.

  相似文献   

8.
研究了浇铸温度和模具温度两个温度参数在重力金属型铸造中对商业AZ91D和新型Mg-3Nd-0.2Zn-Zr(质量分数,%;NZ30K)镁合金热裂性能的影响。结果表明,模具温度对合金热裂性能的影响比浇铸温度的更显著,后者的影响仅在模具温度较低时(AZ91D在341 K,NZ30K在423 K)有所显现。与只包含补缩参数的热裂模型相比,同时包含补缩参数、晶粒尺寸和合金凝固区间的热裂模型更能够准确地评价不同镁合金的热裂性能。为了获得较好的热裂抗力,建议AZ91D合金的浇铸温度为961~991 K,模具温度≥641 K;NZ30K合金的浇铸温度为1003~1033 K,模具温度≥623 K。  相似文献   

9.
The effects of Cu addition (0.5%, 1%, 1.5%, 2%, and 3%, mass fraction) on the quality index (Qi) and hot tearing susceptibility (HTS) of A356 alloy were investigated. According to the results, Cu addition up to 1.5% increases the Qi by almost 10%, which seems to be due to its solid solution strengthening and dispersion hardening effect of Cu-rich Al2Cu and AlMgCuSi compounds. However, further addition of Cu (up to 3%) decreases the Qi by almost 12%, which is likely due to the reduction of tensile strength and elongation caused by increased volume fraction of brittle Cu-rich intermetallics and microporosities in the microstructure. It is also found that Cu increases the HTS of A356 alloy measured by constrained rod casting method. According to the thermal analysis results, Cu widens the solidification range of the alloy, which in turn, decreases its fluidity and increases the time period during which the mushy-state alloy is exposed to the hot tearing susceptible zone. SEM examination of the hot tear surfaces in high-Cu alloys also demonstrates their rough nature and the occurrence of interdendritic/intergranular microcracks as convincing evidences for the initiation of hot tears in the late stages of solidification in which there is not enough time for crack healing.  相似文献   

10.
Abstract

High-strength automotive components are often made of AlSi7-based alloys. A very challenging problem with aluminium casting is the influence of melt flow during solidification, because it affects the microstructure formation and therefore the material properties. The scope of this paper is to investigate the effect of forced melt flow on the evolution of the dendritic microstructure in a binary AlSi7 alloy during directional solidification. Global modelling using the software CrysMAS provides typical flow patterns and velocities. These values are used as boundary condition for the flow in the phase field code MICRESS, which allows the numerical simulation of dendritic array solidification in 2D with applied flow. From solidification experiments in a gradient furnace with applied rotating magnetic field the dendrite shapes are determined. It is found consistently that intense melt flow leads to asymmetric dendrite shapes and the growth behaviour of the dendrite arms is directly correlated with the flow direction.  相似文献   

11.
The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy. The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm. By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification. The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited. In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.  相似文献   

12.
利用双电偶热分析和约束杆模具热裂评价法,研究了Fe和Cu杂质元素对6061再生铝合金凝固特性和热裂倾向(HTS)的影响。结果表明,随着Fe和Cu元素含量的增加,再生铝合金的热裂倾向逐渐增大。Fe元素主要影响再生铝合金初期凝固行为,提高Al13Fe4富铁相的形核温度和含量,促使凝固过程中枝晶搭接完成,阻碍液相流动补缩。Cu元素主要影响再生铝合金末期凝固行为,低熔点Al5Cu2Mg8Si6相显著降低脆性温度区间的下限,并降低固相线附近糊状区强度,导致热裂性能恶化。  相似文献   

13.
为了研究电磁搅拌作用对激光熔凝熔池凝固过程的影响,采用有限体积法对施加磁场前后激光单道动态熔凝TA15钛合金过程进行三维磁-热耦合数值模拟。研究了磁场对激光熔池流场、熔凝单道及其周边基材温度分布、固液界面处温度梯度和凝固速度的影响,并采用试验手段对模拟结果进行了验证。模拟结果表明:电磁搅拌作用使激光熔池最大流速增加了约20%,对流加剧促进了熔池热交换作用,使其最高温度下降,固液分界面处温度梯度大幅降低,凝固速度小幅增大,从而有利于熔池顶部组织发生柱状晶-等轴晶转变(CET)。试验结果显示施加磁场后熔凝层顶部有等轴晶组织生成,且随着远离磁场中心,电磁力增大,等轴晶区有扩大趋势。试验结果和模拟结果一致性较好。  相似文献   

14.
Thermal analysis was used to investigate the microstructural evolution of Mg-7Zn-xCu-0.6Zr alloys during solidification. The effect of Cu content (0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of the Mg-7Zn-xCu-0.6Zr alloys was investigated with a constrained rod casting (CRC) apparatus, equipped with a load sensor and a data acquisition system. The thermal analysis results of Mg-7Zn-xCu-0.6Zr alloy revealed that the alloy consisted of two distinct phases: α-Mg and MgZn2. Three distinct peaks were observed in the alloys with Cu addition, which were identified as α-Mg, MgZnCu and MgZn2. In addition, the reaction temperature of α-Mg decreased and the reaction temperatures of MgZn2 and MgZnCu increased as the Cu content increased. The experimental results of hot tearing demonstrated that the addition of Cu significantly reduced the hot tearing susceptibility (HTS) of Mg-7Zn-xCu-0.6Zr alloys due to the higher eutectic temperature and the shorter solidification temperature region.  相似文献   

15.

Based on multi-physical field coupling numerical simulation method, magnetic field distribution, melt flow, and heat transfer behavior of a Φ300 mm AZ80 alloy billet during differential phase electromagnetic DC casting (DP-EMC) with different electromagnetic parameters were studied. The results demonstrate that the increase in current intensity only changes the magnitude but does not change the Lorentz force’s distribution characteristics. The maximum value of the Lorentz force increases linearly followed by an increase in current intensity. As the frequency increases, the Lorentz force’s r component remains constant, and the z component decreases slightly. The change in current intensity correlates with the melt oscillation and convection intensity positively, as well as the liquid sump temperature uniformity. It does not mean that the higher the electric current, the better the metallurgical quality of the billet. A lower frequency is beneficial to generate a more significant melt flow and velocity fluctuation, which is helpful to create a more uniform temperature field. Appropriate DP-EMC parameters for a Φ300 mm AZ80 Mg alloy are 10–20 Hz frequency and 80–100 A current intensity.

  相似文献   

16.
Wang  Zhi  Yao  Sheng  Feng  Yu  Liu  Zheng  Li  Yi-zhou  Wang  Feng  Mao  Ping-li 《中国铸造》2018,15(2):124-131
Hot tearing is known as one of the most serious solidification defects commonly encountered during solidification. It is very important to study the solidification path of alloys. In the work, thermal analysis with cooling curve was used for the investigation of microstructure evolution with different Zn contents during solidification process of MgZn_xY_4Zr_(0.5) alloys. Thermal analysis results of MgY_4Zr_(0.5) alloys revealed one distinct phase precipitation: α-Mg. Three different phase peaks were detected in the Zn-containing alloys: α-Mg, Z-phase(Mg_(12)YZn) and W-phase(Mg_3 Y_2Zn_3). In addition, for the present MgZn_xY_4Zr_(0.5) alloys, the freezing ranges of these alloys from large to small were: MgZn_(1.5)Y_4Zr_(0.5)MgZn)(3.0) Y)4Zr_(0.5)MgZn0.5 Y4 Zr0.5MgY_4Zr_(0.5). The effect of different contents of Zn(0, 0.5, 1.5, 3.0 wt.%) on hot tearing behavior of MgY_4Zr_(0.5) alloy was investigated using a constrained rod casting(CRC) apparatus equipped with a load cell and data acquisition system. The experimental results show that the addition of Zn element significantly increases hot tearing susceptibility(HTS) of the MgY_4Zr_(0.5) alloy due to its extended freezing range. Some free dendrite-like bumps and ruptured liquid films on the fracture surfaces were observed in all the fracture surfaces. These phenomena proved the fact that the hot tearing formation was caused by interdendritic separation due to lack of feeding at the end of solidification.  相似文献   

17.
通过Clyne-Davies模型对MgZn2.5YxZr0.5(x=0.5,1,2,4,6)系合金的热裂敏感性进行预测;采用X射线衍射和扫描电子显微镜分别对MgZn2.5YxZr0.5系合金进行显微组织和热裂区域组织形貌观察,并用自制的"T"形热裂模具,通过A/D转换,用计算机对MgZn2.5YxZr0.5系合金凝固过程中的温度、收缩应力信号数据进行采集和进一步的处理,并描绘其曲线。研究MgZn2.5YxZr0.5合金的凝固温度区间、脆弱区域的凝固温度变化、凝固最后阶段剩余液相分数以及合金中第二相种类等因素对MgZn2.5YxZr0.5系合金热裂倾向的影响:合金热裂倾向从大到小顺序为MgZn2.5Y2Zr0.5,MgZn2.5Y0.5Zr0.5,MgZn2.5Y4Zr0.5,MgZn2.5Y6Zr0.5,MgZn2.5Y1Zr0.5。由于MgZn2.5Y2Zr0.5合金的凝固温度区间最宽,脆弱区域的凝固温度变化最大,凝固最后阶段形成的液膜最少,枝晶干涉点后析出的第二相阻碍枝晶间的补缩等多种原因而造成合金的热裂倾向最大。  相似文献   

18.
1 .IntrOdUction High一strength,light一weight and large一size alumimimalloy eastings are widely used in aviation,astronavigation,gUided missile and 50 on.With the develoPment of neweasting teehnology,it 15 imPortant  相似文献   

19.
脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响   总被引:8,自引:0,他引:8  
在Mg-Gd-Y-Zr合金凝固过程中施加不同频率的脉冲磁场,研究脉冲磁场对Mg-Gd-Y-Zr合金凝固的影响.实验结果表明,脉冲磁场使Mg-Gd-Y-Zr合金晶粒细化,在频率为5 Hz条件下获得最佳的晶粒细化效果,平均晶粒尺寸从未加脉冲磁场条件下的65 pm细化到37 pm.脉冲磁场的搅拌导致熔体磁过冷及熔体温度梯度降低是晶粒细化的主要原因.脉冲磁场的施加使抗拉强度和延伸率较常规铸造合金分别提高了4.8%、78.5%.  相似文献   

20.
水轮机下环铸件凝固过程热应力模拟分析   总被引:3,自引:0,他引:3  
采用数值模拟方法对水轮机下环铸件凝固过程中的应力场进行了模拟和分析。模拟中采用接触单元法处理铸件与砂芯之间力的作用,改进了传统的铸件/铸型边界条件处理方法。文中重点分析了下环凝固过程中准固相区的受力情况,根据准固相区受力特点建立了适当的热裂判据,对下环凝固过程热裂倾向性进行预测。实际生产结果与预测结果相符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号