首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
连接螺栓的失效分析   总被引:1,自引:0,他引:1  
某构件进行疲劳性能试验时,连接螺栓发生断裂。通过断口宏微观观察、金相组织检查、硬度及化学成分检测,确定了连接螺栓的断裂性质和原因。结果表明:连接螺栓的断裂性质为微动疲劳;断裂原因是球轴承上由于某种偶然因素形成缺口,导致球轴承上裂纹的萌生和扩展,球轴承裂纹的产生使得连接螺栓与球轴承之间的预紧力减小,局部松动而产生不均匀接触,在径向有规律的往复载荷作用下,导致连接螺栓产生微动磨损,进而发生微动疲劳断裂。  相似文献   

2.
发动机在分解检查时发现,顺航向左侧α1作动筒与支架固定销轴上的开口销发生断裂。通过外观检查、断口宏微观分析、表面检查、成分分析、组织检查、硬度检查等手段和有限元分析,对故障开口销的断裂性质和断裂原因进行分析。结果表明:故障开口销材质硬度值偏高,不符合标准要求;故障开口销断裂的性质为疲劳断裂;故障开口销在发动机工作过程中与作动筒支架侧表面发生周向摩擦,开口销内弧表面产生弯曲应力,再加上源区附近表面的磨损影响,最终导致其疲劳断裂。  相似文献   

3.
刘春江  陈贺贺  黄超  国晨  姜涛 《失效分析与预防》2020,15(2):123-126, 136
螺纹连接是航空装备的常用结构形式,常发生损伤失效,磨损失效是接头螺纹一种不常见的失效形式。通过对一起接头螺纹磨损故障进行宏观观察、微观观察、金相组织检查、硬度检测和尺寸计量,分析螺纹磨损机理和磨损原因。结果表明:螺纹磨损性质为微动磨损,接头旋紧预紧力相对较小以及螺纹的工作高度较小,引起螺纹接触压力和位移幅值的增大,是螺纹发生微动磨损的原因。  相似文献   

4.
烟气轮机叶片断裂原因分析   总被引:1,自引:0,他引:1  
某炼化厂烟气轮机一动叶片断裂引起停机事故.通过断口宏观、微观观察和叶片金相检验对叶片断裂原因进行分析,结果表明:叶片断裂性质为微动疲劳,叶片榫头与轮盘榫槽装配不良导致局部应力过大产生微动磨损是引起疲劳断裂的主要原因.  相似文献   

5.
某型燃气轮机运行近1 000 h后,发生2片低压压气机转子叶片脱榫断裂和同级多片榫头裂纹故障。通过对断裂和裂纹叶片外观观察、断口分析、化学成分分析、硬度检测和金相检验等手段,确认了断裂和裂纹叶片失效模式相同,均属振动疲劳断裂,盘和叶片配合不良引起微动磨损是该级叶片早期振动疲劳断裂的主要原因。盘、片配合不良主要是由于配合面间无防磨损涂层,在应用过程中产生氧化和磨损引起的;通过盘和叶片榫齿配合面涂干膜润滑,有效解决了盘片配合面微动磨损问题。  相似文献   

6.
本文分析了飞机前襟翼作动筒连接螺栓底座表面裂纹的形成原因。对底座表面裂纹形貌以及渗层组织进行了观察,并且对螺栓的化学成分以及硬度进行了测定。结果表明,螺栓底座的表面裂纹为渗碳层裂纹,该裂纹性质为疲劳裂纹,裂纹起始于微动腐蚀形成的表面点蚀坑。采用显微硬度法检查渗碳层深度为1.2mm,超过了渗碳层深度的设计要求(0.6—1mm)。分析认为,螺栓底座表面裂纹的形成与渗碳层深度超标有关,而微动磨损产生的点蚀坑促进了渗碳层疲劳裂纹的萌生。  相似文献   

7.
对钛合金同种TA1-TA1(TT)及异种TA1-Al5052(TA),TA1-H62(TH)自冲铆接头进行疲劳试验,用扫描电子显微镜对断口及微动区进行观测研究其微动磨损机理,并研究下板强度对接头疲劳寿命和失效形式的影响.结果表明,断口裂纹萌生区即为微动磨损区.微动磨损导致微动区亚表面产生微裂纹并逐步扩展为宏观疲劳裂纹导致接头最终失效;微动磨屑在微动磨损过程中主要起减轻磨损作用.总体上TT接头具有最优疲劳性能,疲劳载荷较高时TA接头疲劳性能优异,疲劳载荷较低时TH接头疲劳性能优异.两板强度相当且疲劳载荷较高时失效形式主要为铆钉断裂,疲劳载荷较低时失效形式主要为下板断裂;而下板强度与上板强度相差较大时,疲劳失效形式为下板断裂.  相似文献   

8.
空心风扇叶片榫头裂纹原因分析   总被引:1,自引:0,他引:1  
空心风扇叶片振动疲劳试验后在榫头表面出现裂纹。通过外观检查、断口宏微观分析、表面检查、成分分析、组织和硬度检测等试验,对裂纹性质和产生原因进行了分析研究。结果表明:叶片榫头表面裂纹为微动疲劳开裂,叶片与夹具间产生的微动磨损是导致该叶片过早萌生疲劳裂纹的主要原因,而产生微动磨损与叶片榫头的几何特征、夹具与其配合状态及榫头部位未采用表面处理措施有关。  相似文献   

9.
某电机作动筒支臂材料为40Cr钢,在支臂系统测试过程中支臂发生断裂。通过外观检查、断口观查、金相检验和硬度检测等方法,确定了支臂断裂性质和断裂原因。结果表明,电机作动筒支臂断裂性质为脆性过载断裂;支臂调质不良,材料中出现大量铁素体,支臂脆性增大,同时内壁存在脱碳层以及壁厚不足降低了支臂的承载能力是导致其过载断裂的内因;支臂工作过程中存在不均匀受力以及冲击载荷是导致其断裂的外因。通过热模拟试验讨论了支臂不良组织产生原因,并提出了预防措施。  相似文献   

10.
锻铝合金扭力臂进行疲劳试验时,扭力方形臂叉耳端发生开裂。对方形臂叉耳端裂纹断口的宏微观形貌进行了观察和能谱成分分析,对方形臂的金相组织和低倍组织进行了检查,测试了方形臂的硬度,确定了方形臂的开裂性质及原因。研究结果表明,扭力方形臂裂纹的性质为微动疲劳开裂。方形臂与衬套之间磨粒磨损引起的微动磨损是导致方形臂开裂的直接原因,方形臂流线分布不合理也在一定程度上降低了零件的力学性能。  相似文献   

11.
发动机连杆螺栓发生断裂失效,通过断口宏微观观察、金相组织检查、硬度及拉伸性能测试、螺纹尺寸测量和化学成分分析,对连杆螺栓断裂原因进行了分析。结果表明:螺栓的断裂性质为疲劳断裂;螺栓的金相组织及化学成分未见异常,硬度及拉伸性能符合要求,螺纹尺寸不符合标准要求。综合分析认为:螺栓发生松动是螺栓断裂的根本原因;螺栓松动与装配时预紧力过小和螺纹直径偏小有关。针对断裂原因,提出了预防措施。  相似文献   

12.
钛合金螺栓断裂原因分析   总被引:1,自引:1,他引:0  
某型飞机在完成飞行科目后,在对其进行例行检查时,发现钛合金连接螺栓断裂.通过对螺栓断口宏微观观察、力学性能测试、装配生产流程分析等方法,确定了螺栓断裂性质和原因.结果表明:螺栓断裂性质为疲劳断裂;单耳与螺栓呈一定角度和单耳的孔边没有倒角,加剧了螺栓光杆部位的磨损,破坏了螺栓表面完整性是导致螺栓断裂的原因;通过增加单耳孔...  相似文献   

13.
汽车在路试行驶了约28 km后,下摆臂与车架连接螺栓发生断裂。通过对螺栓断口进行宏微观观察、能谱分析,对断口附近材料进行硬度和金相检查,分析研究螺栓断裂的性质和原因,并提出改进措施。结果表明:螺栓断裂性质为低周疲劳断裂;导致螺栓断裂的原因是装配时的预紧力不足,且行驶路况较差,导致受到双向弯曲交变应力和较大冲击载荷;严格控制装配工艺,避免预紧力不足而产生螺栓松动。  相似文献   

14.
30CrMnSiA钢制电机固定螺栓断裂原因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
固定电机的30CrMnSiA钢制螺栓在使用过程中发生断裂,通过载荷分析、螺栓外貌及断口形貌观察、显微组织分析、化学成分及硬度检测,对其断裂原因进行了分析。结果表明:螺栓的失效性质为疲劳断裂,螺纹根部的加工损伤是疲劳裂纹源,而螺栓表面脱碳对疲劳断裂起到了促进作用。  相似文献   

15.
主桨毂中央件疲劳试验限动锁连接螺栓出现提前断裂故障,通过断口宏观形貌、微观组织、断口特征、硬度等分析方法,得出故障件的断裂性质为单向弯曲疲劳断裂,产生原因与螺栓拧紧力矩降低、螺栓头部倒角过渡区域加工质量有关。通过增大限动锁连接螺栓拧紧力矩、螺纹及螺栓头部R区进行倒圆弧滚压强化等改进措施,主桨毂中央件限动锁连接螺栓在疲劳试验全过程中未再发生提前断裂。  相似文献   

16.
卡车发动机排气系统中的缠绕式金属软管在行驶过程中发生断裂及卡死现象。通过宏观分析、断口观察、金相分析、能谱分析及硬度检测等手段,对金属软管断裂的原因进行分析:粘着磨损和磨粒磨损导致金属软管的截面厚度逐渐变薄,截面变薄后零件抗疲劳性能下降,最终发生疲劳断裂。发生卡死的原因是车辆在行驶过程中,由车轮激起的泥沙或其他异物逐渐进入金属软管空隙,在金属软管间隙内淤积,而卡死也加速了金属软管的断裂。针对失效原因,提出了防止金属软管发生卡死和断裂的方法。  相似文献   

17.
针对某汽车厂家用轮胎螺栓在使用过程中发生断裂的问题,使用金相显微镜、洛氏硬度计、原子荧光光谱仪、碳硫仪等仪器进行分析。结果表明:轮胎螺栓断裂是由于受力不均,局部存在应力集中,致使杆部受挤压产生变形和磨损,诱发了疲劳裂纹的萌生。在交变应力的继续作用下,疲劳裂纹进一步扩展,最终导致疲劳断裂。  相似文献   

18.
直升机尾桨连杆组件失效分析   总被引:1,自引:0,他引:1  
直升机在飞行降落时尾桨操纵连杆发生断裂,对断裂的尾桨连杆组件损伤及磨损情况进行外观检查,宏微观观察分析连杆断口,并对连杆的材料成分、金相组织和硬度进行检查。结果表明:连杆的断裂性质为疲劳断裂,疲劳起源于螺纹根部,疲劳区占断口总面积80%以上;连杆端部的球轴承产生了异常的磨损。分析认为:由于连杆端的球轴承产生了异常的磨损,导致其对连杆的限位功能不良,连杆发生轻微偏转使连杆上形成了附加的弯曲应力。该应力与连杆上的工作应力叠加,造成连杆发生了疲劳断裂。此外,对连杆硬度的检测表明连杆的硬度仅为HRC 22.7,说明其强度较低,疲劳抗力较差,也是连杆容易发生疲劳断裂的原因。  相似文献   

19.
 高强度汽车轮毂螺栓在汽车运行时发生断裂。对断裂螺栓进行宏观和微观检验、化学成分分析、 金相检验硬度检测等方面的分析,结果表明:螺栓化学成分和金相组织均正常。经对螺栓变形情况及受力情况分析,认为螺纹损伤、安装工人的安装不得当,引起螺栓安装时预紧力不足,导致螺栓发生疲劳断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号