首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一个新的动态再结晶过程的分析模型   总被引:9,自引:1,他引:9  
应用不可逆热力学方法,本文建立了一个新的动态再结晶过程的分析模型。在这个模型中根据动态再结晶重复形核有限长大机理,分别考虑原始晶粒和再结晶晶粒分布的变化。由于模型不考虑再结晶晶粒形成细节,所以本模型也适用于由亚晶直接转变成新晶粒的情况。这种情况中只有晶界能增加并无明显晶粒长大。由此模型导出了再结晶体积分数及有关晶粒尺寸的演化方程。将这些演化方程插人到作者给出的考虑不同变形机制的热塑性本构关系中,便得到了有动态再结晶过程伴随的热塑性本构关系。这一本构关系不仅适用于一般的热加工变形,还适用于动态再结晶引起晶粒细化所造成的变形机理改变的热变形过程。最后给出一些算例并对一些有关问题进行了讨论。  相似文献   

2.
结合多态相场(MSPF)模型与晶体畸变模型,获得变形镁合金初始变形晶粒组织以及合金内部的非均匀储存能分布,计算模拟不同退火温度条件下的再结晶形核和晶粒长大的微观演化过程,分析退火温度对再结晶晶粒长大和晶粒尺寸的影响,对比不同时刻的再结晶晶粒分布特征。结果表明:在相同的变形条件下,位错密度高的区域,如晶界附近,储存能较高,再结晶形核最先在高储存能区域出现,并通过合并与吞噬机制长大;而在变形晶粒内部,储存能较低且分布相对均匀,再结晶过程中形核长大较慢。不同退火温度下晶粒尺寸权重概率的分布表明:低温下会出现双峰结构和异常晶粒长大现象;高温下晶粒长大较快,晶粒尺寸分布向大尺寸方向变化且趋于均匀。  相似文献   

3.
为了研究7055铝合金在热压缩过程中的组织演变规律,基于元胞自动机法(CA)建立7055铝合金动态再结晶(DRX)模型。为了获得模型的材料参数,进行单道次热压缩实验,通过最小二乘法拟合获得7055铝合金的位错密度模型、形核率模型和再结晶晶粒长大模型。研究应变、应变速率、变形温度和初始晶粒尺寸对热压缩过程中显微组织演变的影响。结果表明:在热压缩过程中,动态再结晶使材料晶粒明显细化。大应变、高温和低应变速率有利于晶粒细化;动态再结晶晶粒的稳态晶粒尺寸与初始晶粒大小无关,而取决于温度和应变速率的变化;分析热压缩过程动态再结晶动力学规律。由CA仿真流变应力值和仿真组织图与实验结果的对比可知,所建立的基于CA法的动态再结晶模型能有效地预测7055铝合金在热变形过程中的动态再结晶组织演变规律。  相似文献   

4.
以AZ31镁合金在热压缩过程中微观组织演变为基础,结合元胞自动机模型(CA),建立了镁合金变形过程中再结晶晶粒尺寸模型和动态再结晶百分数模型。通过对铸态AZ31镁合金在不同变形条件下的热压缩实验,推导出镁合金的位错密度模型、临界位错密度模型、形核率模型和晶粒长大模型。结合元胞自动机具体演变规则,建立元胞自动机模型,并利用应力应变曲线及晶粒大小验证元胞自动机的模拟结果,验证该模型的准确性,结合实验数据和JMAK理论,推导出再结晶晶粒尺寸模型和动态再结晶百分数模型。借助DEFORM-3D分析软件得到镁合金在变形过程中,晶粒尺寸分布的变化情况以及动态再结晶百分数分布的变化情况。  相似文献   

5.
硼元素添加造成的相转变和硼化物析出等因素会对原位TiAl基复合材料显微组织演化及热变形行为产生影响。利用等温压缩实验、扫描电子显微技术以及透射电子显微技术等研究材料的动态再结晶和动态回复机制,并计算出其表现变形激活能为691.506 k J/mol。在1100~1200℃温度区间,再结晶γ和α晶粒的形核长大分别主导α2→α相转变温度上、下的热变形行为。α相的动态回复主导材料在1250℃低应变速率下的热变形行为;同时,硼元素会提高α相含量,降低γ→α和α2→α相转变温度,进而促进加载过程中回复α相晶粒的形核长大。根据新建的本构模型,对TiAl基复合材料的变形机制和加工工艺进行详细阐述.  相似文献   

6.
采用Gleeble3500D热模拟试验机研究了GH4720Li合金的高温热变形行为,分析了不同热压缩工艺条件下流变力学曲线特征,建立了表征材料流变力学特征的包含应变参量的双曲正弦型Arrhenius本构关系模型以及BP人工神经网络模型,并通过对材料热变形组织的表征,揭示了GH4720Li合金高温变形过程中的动态再结晶形核机制。结果表明,包含应变参量的双曲正弦型Arrhenius本构关系模型预测精度较差,而BP人工神经网络模型能很好地表征GH4720Li合金热变形过程中的流变力学行为,模型预测值与实验值的平均相对误差仅为0.814%。组织分析结果表明,GH4720Li合金在1140℃条件下动态再结晶的主要形核机制为非连续动态再结晶,变形晶粒的晶界为再结晶晶粒提供形核位置。  相似文献   

7.
用热模拟实验机对铸态42CrMo钢进行高温拉伸实验,分析了断口及断口附近的微观组织、空洞演化与温度、应变速率及应变之间的关系,探讨了工艺参数和动态再结晶行为对空洞演化的影响,研究了铸态42CrMo钢的微观损伤机理。结果表明:铸态42CrMo钢的变形温度控制在1423~1473 K,并控制应变速率和应变,可以抑制高温拉伸变形中的空洞萌生、长大和聚集;发生动态再结晶行为时,微空洞不易形核和长大,空洞之间聚集的间距减小,增加了断裂应变;铸态42CrMo钢高温拉伸变形过程中,氧化硅、硫化锰、氧化铝和氧化钙等夹杂物的脱落或破裂导致空洞形核,且马氏体晶粒之间也可形核。  相似文献   

8.
采用元胞自动机(CA)方法对高温合金IN690管材挤压变形过程中动态再结晶组织演变规律进行了数值模拟研究。确定了位错密度模型、回复模型、形核模型、晶粒长大模型等。分析了挤压变形过程中动态再结晶的过程,得到了变形过程中的晶粒形态、分布、取向和尺寸。结果表明,在相同挤压比条件下,管壁外部的平均晶粒尺寸小于管壁中部;在管材的相同部位,随着挤压比的增大,平均晶粒尺寸减小。平均晶粒尺寸的数值模拟结果与实验结果的相对误差小于16.6%。  相似文献   

9.
使用皮尔格管材轧机在不同轧制变形量和轧制温度下热轧生产了大口径厚壁316LN不锈钢管,采用光学显微镜观察了热轧态管材和固溶态管材的显微组织,采用万能试验机测定了固溶态管材的室温拉伸力学性能。结果表明:提高轧制变形量能促进热轧过程中动态再结晶的形核过程,细化动态再结晶晶粒;提高热轧温度能促进热轧过程中动态再结晶的长大过程,粗化动态再结晶晶粒;不完全动态再结晶的热轧管材在固溶热处理过程中会发生已再结晶晶粒的异常长大,产生混晶,降低力学性能;提高轧制变形量和降低轧制温度可以细化固溶态管材的晶粒尺寸,提高力学性能。  相似文献   

10.
变形合金的亚晶组织演化的相场模型   总被引:2,自引:0,他引:2  
将多态相场(MSPF)模型与品格畸变模型结合,根据合金的储存能分布,应用于亚晶组织的演化研究.通过构造变形晶粒的初始亚晶组织,计算模拟再结晶过程中亚晶通过合并与吞噬机制进行长大的微观演化过程,系统研究了变形量对亚晶尺寸分布和亚晶长大速率的影响.结果表明,在储存能较高的区域(如晶界附近处),亚晶较细小,分布较密集;再结晶过程中,亚晶密度高的区域最先出现亚晶合并和吞噬现象,并通过该机制使再结晶晶粒形核和长大;而在变形晶粒内部,亚晶分布较均匀且数量密度低,尺寸较大,亚晶合并长大的速率较慢.再结晶晶粒尺寸权重概率分布表明,变形量大的合金,晶粒尺寸较快地变大,完成再结晶的时间较短,而变形量较小的合金,晶粒尺寸变化较慢,再结晶完成的时间较长.亚晶组织演化的模拟结果与实验结果相符.  相似文献   

11.
采用钻孔压缩法在45钢试样内部预制内裂纹,并对裂纹试样进行900℃、1000℃、1200℃加热,观察裂纹表面的组织变化。结果表明,45钢内裂纹试样加热时,裂纹表面普遍存在铁素体晶粒形核与长大,从而使裂纹表面向裂纹中心方向迁移,裂纹表面迁移有分段现象。原子扩散是物质补给方式,铁素体晶粒形核长大是内裂纹表面迁移方式。原子扩散是裂纹愈合的基本要素,为内裂纹表面迁移提供物质来源,但是铁素体晶粒形核长大能够使原子扩散速度加快,而裂纹表面无新晶粒形核长大的裂纹愈合现象,相比之下,存在铁素体晶粒形核长大现象的裂纹愈合行为中,裂纹表面迁移更迅速。  相似文献   

12.
建立了预测微合金钢热变形奥氏体动态再结晶组织与性能演变的元胞自动机模型.采用基于位错密度的动态再结晶理论,主要考虑动态再结晶的形核、晶粒长大,实现对动态再结晶过程晶粒形态、体积分数及晶粒尺寸的定量化表征及其演变过程的可视化描述,获得了位错密度及流变应力等参数.模拟得到的动态再结晶组织形貌及基于位错密度变化计算出的流变应力与实验结果吻合较好.  相似文献   

13.
通过热模拟压缩试验研究了挤压态AZ41M镁合金在应变速率为0.005~1s-1、温度为300~450℃条件下的热变形行为.利用光学显微镜分析了合金热变形过程中的组织演变.结果表明:挤压态AZ41M镁合金热变形过程中,真应力应变曲线表现出典型的单峰动态再结晶(DRX)特征,合金具有比较高的温度和应变速率敏感性;合金热变形过程中,DRX 会促进晶粒细化,且应变速率越小,温度越高,合金越容易发生动态再结晶;温度的升高可以促进合金DRX 的发生与晶粒长大,能改善合金变形的不均匀性,但温度过高会导致晶粒尺寸粗大不均匀;应变速率越大,变形量越大,晶粒尺寸越细小且更均匀;合金热变形过程中,DRX形核机制主要受温度影响,应变速率与变形量对其影响较小,在温度较低(300℃)时,合金主要以弓弯形核机制发生不连续动态再结晶,在较高温度(450℃)时,同时存在弓弯形核不连续动态再结晶形式和孪晶诱变形核连续动态再结晶形式.  相似文献   

14.
纯铜动态再结晶过程的元胞自动机模拟   总被引:3,自引:0,他引:3  
基于热加工过程金属学原理,建立了一类改进动态再结晶二维元胞自动机模型,模拟了加工硬化,动态回复、形核及再结晶晶粒长大等一系列过程.利用该模型可得到整个热加工过程流变应力变化,晶粒的形态、晶粒取向及大小.流变应力的大小可由基体与再结晶晶粒位错密度的平均值计算.采用该模型对不同应变,应变率及温度下纯铜动态再结晶过程进行了模拟,模拟结果与相同热变形条件下纯铜实验结果吻合较好.  相似文献   

15.
采用Thermecmastor-Z型热模拟机对Haynes230合金进行变形温度为950~1250 ℃,应变速率为0.001~10 s-1范围内的高温压缩试验,并利用OM和TEM分析研究了热变形组织演化特征和动态再结晶形核机制。结果表明:动态再结晶晶粒尺寸和体积分数随着变形温度的升高而增大和增多,随着应变速率的升高而变小和减少;晶界弓出是合金动态再结晶的主要形核机制,项链组织在热变形组织演化过程中起着重要作用;动态再结晶稳态晶粒尺寸Dss与Z参数之间符合幂函数关系  相似文献   

16.
零件的力学和物理性能很大程度上取决于材料的微观组织和化学成分,针对钛合金在机加工过程中会发生严重的塑性变形和较高的温度下所触发的动态再结晶(DRX)以及动态回复现象成为了微观组织演化的一种机制,通过建立有限元-元胞自动机(FE-CA)耦合的DRX预测模型,该模型包括位错密度模型、晶粒形核模型、晶粒长大模型,目的是为了研究车削钛合金过程中的微观组织演化机制,在不同进给量下温度、应变、应变率对DRX的影响规律,结果表明:温度的增大有利于DRX行为的发生,较高的应变有利于DRX晶粒的长大,较大的应变率增强了形核率的发生而抑制了晶粒的长大;随着进给的增大,切屑更容易发生DRX,切屑晶粒细化程度增强,而已加工表面细化程度减弱,刀具后刀面磨损更易触发已加工表面的DRX。  相似文献   

17.
针对热挤压态FGH95合金进行变形温度为1050~1120 ℃、变形量为50%和70%、应变速率为10?4~1 s?1的热压缩试验,研究该合金动态再结晶(DRX)的组织演变和形核机制。结果表明:提高变形温度和降低应变速率可以促进小角度晶界向大角度晶界迁移,有利于动态再结晶晶粒的长大;变形温度和变形量对热挤压态FGH95合金的动态再结晶机理的影响不明显,而应变速率对动态再结晶机制影响较大;随着应变速率的增加,热挤压态FGH95合金由不连续动态再结晶机制逐渐转变为连续动态再结晶机制;热挤压态FGH95合金的动态再结晶以不连续动态再结晶形核机制为主,以连续动态再结晶形核机制为辅;在1050 ℃、1 s?1变形条件下,热挤压态FGH95合金发生连续动态再结晶形核。  相似文献   

18.
介绍了元胞自动机法模拟钛合金Ti-6A1—2Zr—1Mo—1V(TA15)在β单相区等温压缩过程中的不连续动态再结晶现象。通过元胞自动机模型,动态地模拟了再结晶的形核和后续长大。再结晶晶粒长大的驱动力由晶界处位错密度的演化提供。为了验证本CA模型的正确性,将通过CA模型预测所得的应力-应变曲线与实验值进行对比。对比结果表明,在1020℃,应变速率1.0、0.1、0.01 s~(-1)的条件下,二者平均相对误差分别为10.2%、10.1%和6%;而在1050℃,应变速率1.0、0.1、0.01 s~(-1)的条件下,二者平均相对误差分别为10.2%、11.35%和7.5%,验证了模型的可靠性。另外,基于该CA模型预测研究了再结晶晶粒尺寸、长大速度和再结晶动力学特征。结果表明,再结晶晶粒长大速率随着应变速率或温度的升高而升高;再结晶晶粒尺寸随着应变速率的降低而增加;再结晶体积分数随着应变速率的增加或温度的降低而降低。  相似文献   

19.
利用等温热压缩实验建立了7055铝合金的流变应力、位错密度、形核率以及晶粒长大模型,并基于元胞自动机(CA)法模拟研究了7055铝合金在变形温度300~450℃,应变速率0.01~10 s~(-1),真实应变0.7条件下的微观组织演变。结果显示,高温、高应变速率有利于动态再结晶的形核;而高温、低应变速率有利于动态再结晶的充分进行,并能降低微观组织的平均晶粒尺寸,提升材料的组织均匀性。通过CA法模拟获得的流变应力曲线与实验值吻合较好。  相似文献   

20.
通过在Gleeble-1500热模拟压缩机上对V-10Cr-5Ti合金进行温度为950~1350℃、应变速率为0.01~10 s~(-1)的热模拟压缩实验,并基于Arrhenius模型、位错密度模型、形核模型和晶粒长大模型,建立一种元胞自动机(CA)模型来模拟和表征动态再结晶过程中的组织演变。结果表明:流动应力对变形速率和变形温度具有强烈的依赖性,利用Arrhenius模型预测的应力值与实际测量值的误差小于8%。CA模型计算得到的初始平均晶粒尺寸为86.25μm,与试验测量得到的85.63μm相近。模拟表明:初始晶粒尺寸对动态再结晶组织演化影响并不显著,而提高应变速率或降低变形温度均可细化再结晶晶粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号