首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
开发具有良好生物相容性、耐蚀性及综合力学性能的镁合金是当前可降解金属研究领域的重要方向,本文选取具有良好生物相容性的Zn、Zr、Mn合金元素,通过真空熔炼法制备了新型的Mg-3.0%Zn-0.8%Zr-x%Mn(质量分数,x=0,0.1,0.5,1.0,1.5)系列合金。研究了Mn含量变化对该类合金组织、力学性能及腐蚀降解行为的影响。结果表明:Mn的添加可以细化挤压态Mg-Zn-Zr合金的晶粒尺寸;合金的抗拉强度和屈服强度随着Mn含量的增加先升高后降低,在Mn含量为1.0%时,抗拉强度达到255 MPa,电化学及浸泡测试结果表明Mn的添加使合金的自腐蚀电位增加,耐蚀性能升高,当Mn含量为1.0%时,合金耐蚀性能最好;本研究成分范围内Mg-3Zn-0.8Zr-1Mn合金有最佳的综合力学及耐蚀性能。  相似文献   

2.
采用Mn对过共晶Mg-3.2Si合金进行变质处理,主要考察了Mn含量对合金中初生Mg2Si相的变质效果及合金力学性能的影响。结果表明,Mn对过共晶Mg-3.2Si合金中的初生Mg2Si相具有良好的变质效果。当Mn含量为2%(质量分数)时,变质效果最佳,此时初生Mg2Si相呈多边形,平均颗粒尺寸仅为32μm,相比未变质合金降低了56.8%。随着Mn含量的增加,合金的力学性能呈先提高后降低的趋势。当Mn含量为2%时,合金表现出最佳的力学性能,其抗拉强度和伸长率分别达到187 MPa和3.2%,相比未变质合金提高了67.0%和166.7%。  相似文献   

3.
研究了合金元素Mn对Mg-5Al合金铸态组织和力学性能的影响。结果表明,在Mg-5Al合金中加入Mn后,合金组织细化,连续或半连续网状分布的β-Mg17Al12相逐渐转变为断续、分散的骨骼状相,晶界附近出现颗粒相并且数量逐渐增多。随着Mn含量增加,合金室温抗拉强度、伸长率及冲击韧度先上升然后下降。当Mn含量为0.3%时,合金综合力学性能最好,抗拉强度、伸长率与冲击韧度达到190MPa、7.3%与21.1J·cm-2,分别提高了7.9%、9.1%与9.3%。继续增加Mn含量至0.5%时,Al8Mn5颗粒聚集长大粗化,导致Mg-5Al合金综合力学性能下降。  相似文献   

4.
硼钢热浸镀铝硅合金时,通常会有一定量Mn溶解于镀液中,对热浸镀镀层组织及合金层产生影响。研究了热浸镀用Al-10Si-2Fe合金中Mn元素对镀层组织及合金层的影响。结果表明:Mn元素的添加能够改变铝硅层中富铁相的形貌,当添加质量分数为0. 8%的Mn时,针状富铁相完全转化为汉字状的富铁相。Mn元素的添加也会对铝硅镀层中合金层的厚度产生影响,即随着Mn含量的添加,合金层及Fe_2Al_5层的厚度先增加后减小,Mn的质量分数为0. 8%左右时合金层及Fe_2Al_5层最厚。  相似文献   

5.
系统研究了采用FeV80中间合金制备的低成本(V60Ti22.4Cr5.6Fe12)100-x Mnx(0≤x≤3)合金的吸放氢性能及微观组织结构。XRD及PCT测试结果表明,随着Mn含量的增加,合金的晶格常数减小,放氢平台压先升高后降低;吸氢量随Mn含量的增加不断降低,而Mn含量的增加对放氢量没有显著影响。当Mn含量为2.5 at%时,合金室温下的放氢平台压达到最大值0.14 MPa,吸氢量为3.64%(质量分数,下同),放氢量为2.00%。SEM及EDS分析表明,不同Mn含量的合金均由bcc主相、富钛二相及稀土氧化物相组成,且Mn主要存在于合金的bcc主相中,而在富钛二相中分布相对较少。  相似文献   

6.
系统研究了TiV1.35Cr1.35-x.Mnx(x=0,0.15,0.25,0.35,0.45)合金的相结构及储氢性能。XRD分析表明,所有合金均为体心立方(b.c.c.)结构的单一固溶体相,其晶胞常数随Mn含量的增加而逐渐减小。储氢性能测试表明,用Mn部分取代Cr后,合金的活化性能变差,25℃最大吸氢量有所下降,但合金的吸放氢压力滞后减小,放氢压力平台变得平坦,100℃有效放氢量和放氢率也随着Mn含量的增加先升后降,并在x=0.35时达到最大值。  相似文献   

7.
采用光学显微镜(OM)、流动性及力学性能测试等分析手段研究了微量的Mn元素对Al-7%Mg合金铸态微观组织、流动性及力学性能的影响。结果表明,微量Mn的添加对Al-7%Mg合金的晶粒细化效果并不明显;但对改善合金力学性能是有益的,随着Mn含量的增加,Al-7%Mg合金流动性先增加后降低,当添加0.15%Mn时,合金的单向流动性能最好,平均流动长度达到900 mm;Mn含量在0.05%~0.25%内变动时,合金的抗拉强度、屈服强度和伸长率均随着Mn的增加而显著提高,添加0.25%Mn时分别为299 MPa、151 MPa和12.6%。  相似文献   

8.
通过对不同含Mn量的Mg-6Al-xMn合金进行熔炼、制坯和反向挤压,研究Mn含量对Mg-6Al镁合金组织与力学性能的影响。结果表明,在试验范围内随着Mn含量的增加Mg-6Al-xMn合金凝固组织逐渐细化,β-Mg17Al12相逐渐减少,而出现Al-Mn相,晶粒大小由含Mn量0.3%(质量分数)时的137μm减小到含Mn量0.9%时的73μm,幅度降低为47%。不同含Mn量的Mg-6Al-xMn合金经400℃,12h均匀化处理后,β-Mg17Al12相消失。不同含Mn量的Mg-6Al-xMn合金经挤压后,挤压棒材的晶粒也随Mn含量的增加而逐变小;挤压棒材的抗拉强度、屈服强度和延伸率均随着Mn含量的增加先增加后降低。Mn含量为0.5%的挤压棒材抗拉强度和屈服强度最高,分别为293MPa,173MPa;Mn含量为0.7%的挤压棒材延伸率最大,达20%。  相似文献   

9.
Fe—Mn—Ge合金γ→ε马氏体相变的研究   总被引:3,自引:0,他引:3  
张斌  彭颖红  陆兴  覃作祥  张彦生 《金属学报》2001,37(12):1238-1242
利用金相组织观察,透射电子显微镜(TEM)分析和点阵参数测定方法研究了Ge含量对Fe-24Mn合金马氏体相变和显微组织结构的影响。结果表明,Fe-24Mn合金在冷却过程中产生大量的ε马氏体,在较低Ge含量合金中的后形成马氏体可以穿越或终止在另一取向的先形成马氏体片中,宽大的马氏体片是由大量相互平行的层错构成,随Ge含量的增加,马氏体片之间以交截或平行为主,这一结果表明:Ge的加入使Fe-24Mn合金中奥氏体层错能增加,合金中的ε马氏体数量减少,马氏体转变开始点Ms降低,Ge增大Fe-24Mn合金奥氏体的点阵常数,但对Fe-24Mn合金形状记忆效应的影响并不显著。  相似文献   

10.
采用光学显微镜、X射线衍射仪和INSTRON材料试验机等,研究Mn对高Fe含量的A356合金中Fe相的中和作用,讨论Mn加入量对合金的组织和力学性能的影响。实验结果表明,添加Mn能将粗大针状Fe相转变为汉字状Fe相,但过量加入会导致Fe相总的体积含量增加,形成鱼骨状Fe相。合金的抗拉强度和伸长率亦随Mn加入量的增加呈先升后降趋势,当wMn/wFe为1.1时达到最大值。经T6热处理能进一步提高A356合金的力学性能。  相似文献   

11.
试验研究了Mn含量对镁合金力学性能的影响。通过在工业纯镁中加入2%~6%的Mn形成镁锰系列合金。Mn含量为6%的合金中脆硬相增多,所以合金的抗拉强度和伸长率有所较低。拉伸实验表明,过多的锰会降低镁锰合金的力学性能。  相似文献   

12.
研究了Mn对Ti-45Al-10Nb(原子分数)合金铸态组织和1100℃再结晶组织的影响以及Mn对于Ti-45Al-10Nb合金力学性能的影响。结果表明,Mn能促进Ti-45Al-10Nb合金的再结晶过程,并改善合金的力学性能  相似文献   

13.
Effect of Fe on microstructure and mechanical properties of the primary AlSi7Mg0.3 alloy and the potential of Mn addition to counteract any adverse effects was investigated in the present work. The primary AlSi7Mg0.3 is a better alloy than its counterpart with twice as much Fe. β platelets grow twice as big when the Fe concentration is doubled. This, in turn, increases shrinkage porosity and leads to a 3-fold decrease in the tensile elongation values. Adding an equal amount of Mn helps to modify the β platelets into more compact α particles and also reduces shrinkage porosity. While these structural changes are reflected by a modest improvement in the mechanical properties, Mn addition fails to offer a full recovery in the ductility of the AlSi7Mg0.3 alloy. Hence, limiting the Fe content of the primary AlSi7Mg0.3 alloy to 0.12 wt% is worthwhile and pays off with superior microstructural features and mechanical properties.  相似文献   

14.
采用真空感应熔炼法制备了Fe-30Mn-1C合金,研究了其力学性能、磁性、模拟体液中的降解速度以及体外生物相容性.研究结果表明,与Fe-30Mn合金和316L不锈钢相比,C的加入提高了铁基合金的力学性能,使材料兼具高强度和高塑性,并进一步降低了材料的磁性,使其具有更优良的核磁共振(MRI)兼容性.电化学阻抗谱(EIS)结果表明,材料的极化电阻降低,浸泡实验也证实材料的降解速度得到提高.体外生物相容性研究结果表明.Fe-30Mn-1C合金同时具有优异的抗溶血、凝血、血小板黏附性能,以及良好的细胞相容性,满足对医用植入材料的基本要求.  相似文献   

15.
研究了锰对ZZnA14Y锌合金显微组织和力学性能的影响.结果表明:锰能细化ZZnA14Y锌合金的基体组织及a相,使合金的硬度和抗拉强度大大提高,但是由于锌合金中的锰主要以富锰化合物相分布于晶界或晶界附近,使得冲击韧性明显下降.分析认为ZZnA14Y锌合金中加入0.05%锰时其具有较好的综合力学性能.  相似文献   

16.
研究Ni54Mn25Ga15Al6高温形状记忆合金的微观组织、马氏体相变特性、力学性能和形状记忆效应。通过与Ni54Mn25Ga21合金对比,分析添加第四组元Al对Ni-Mn-Ga合金性能的影响。结果表明:Ni54Mn25Ga15Al6合金为单一的四方结构非调制马氏体相并呈片状的马氏体孪晶板条形貌。该合金的马氏体相变开始温度超过190°C,具有发展成为高温形状记忆合金的潜力。在Ni-Mn-Ga合金中添加Al会降低马氏体相变温度,这主要归因于Al添加引入的晶格尺寸因素的改变。添加Al元素能有效提高合金的强度和塑性,但降低合金的形状记忆性能。  相似文献   

17.
The effects of Zn addition were examined by observing the microstructure and measuring the mechanical properties of Mg–xZn–2Sn–0.4Mn with different Zn contents. The addition of Zn to the Mg–2Sn–0.4Mn alloy caused the precipitation of secondary phases and an improvement in the mechanical properties. The aged alloys showed improved elongation at break, which led to a slight decrease in yield strength and ultimate strength. The results suggest that the formation of precipitates containing Zn affects the mechanical properties of the alloys.  相似文献   

18.
为了研究7075铝合金对AZ91镁合金组织与性能的影响,采用光学显微镜、扫描电镜、X 射线衍射仪、万能材料试验机研究了AZ91镁合金的显微组织与力学性能。结果表明:向AZ91镁合金中加入7075铝合金可使该合金的铸态组织明显细化,当7075铝合金含量超过4%(质量分数,下同)时,AZ91镁合金铸态组织中Mg17Al12相数量明显减少,并且组织中生成了Al6Mn新相。合金抗拉强度与延伸率随着7075铝合金加入量的增加而提高,当7075铝合金的加入达到4%,其抗拉强度与延伸率达到最大值,分别为186 MPa和8.2%  相似文献   

19.
开发了Mg-3Sn-1Mn合金板材倾斜板连续流变轧制成形工艺,并研究工艺参数对合金板材微观组织和力学性能的影响.结果表明:随着轧辊转速的增加,板材的初生晶粒平均直径增大;随着倾斜板振动频率增加,板材的初生晶粒平均直径先减小后增大,板材的抗拉强度和伸长率先增加后降低.随着浇注温度的升高,板材的初生晶粒平均直径逐渐增大,板材的抗拉强度和伸长率逐渐降低.当浇注温度为670℃、轧辊转速为52mm/s、倾斜板振动频率为60 Hz时,制备了组织性能较好的Mg-3 Sn-1Mn合金板材,其力学性能优于添加0.87%Ce(质量分数)的Mg-3Sn-1Mn合金热轧板材的力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号